Effect of sintering temperatures on properties of BaO–B2O3–SiO2–Al2O3 glass/silica composites for CBGA package
详细信息    查看全文
  • 作者:Bo Li ; Quanyin Long ; Dinan Duan
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:27
  • 期:3
  • 页码:2206-2211
  • 全文大小:1,527 KB
  • 参考文献:1.G. Kromann, Thermal management of a C4/ceramic ball grid array: the Motorola PowerPC 603 and PowerPC 604 RISC microprocessors. in Proceedings of 12th IEEE Semiconductor Thermal Measurement and Management Symposium (1996), pp. 36–42
    2.R. Kandasamy, A.S. Mujumdar, Thermal analysis of a flip chip ceramic ball grid array (CBGA) package. Microelectron. Reliab. 48, 261–273 (2008)CrossRef
    3.A.A.S. Lopes, R.S. Soares, M.M.A. Lima, R.C.C. Monteiro, Glass transition and crystallization kinetics of a barium borosilicate glass by a nonisothermal method. J. Appl. Phys. 115(043516), 1–9 (2014)
    4.J. Puig, F. Ansart, P. Lenormand, L. Antoine, J. Dailly, Sol–gel synthesis and characterization of barium (magnesium) aluminosilicate glass sealants for solid oxide fuel cells. J. Non-Cryst. Solids 357, 3490–3494 (2011)CrossRef
    5.S.-F. Wang, Y.-R. Wang, Y.-F. Hsu, C.-C. Chuang, Effect of additives on the thermal properties and sealing characteristic of BaO–Al2O3–B2O3–SiO2 glass–ceramic for solid oxide fuel cell application. Int. J. Hydrogen Energy 34, 8235–8244 (2009)CrossRef
    6.G.A. Khater, M.H. Idris, Expansion characteristics of some Li2O–BaO–Al2O3–SiO2 glasses and glass–ceramics. Ceram. Int. 32, 833–838 (2006)CrossRef
    7.L. Rezazadeh, S. Baghshahi, A. Nozad Golikand, Z. Hamnabard, Structure, phase formation, and wetting behavior of BaO–SiO2–B2O3 based glass–ceramics as sealants for solid oxide fuel cells. Ionics 20, 55–64 (2014)CrossRef
    8.F. Heydari, A. Maghsoudipour, Z. Hamnabard, S. Farhangdoust, Evaluation on properties of CaO–BaO–B2O3–Al2O3–SiO2 glass–ceramic sealants for intermediate temperature solid oxide fuel cells. J. Mater. Sci. Technol. 29(1), 49–54 (2013)CrossRef
    9.S. Chen, S.R. Zhang, X.H. Zhou, Thermal and dielectric properties of the LTCC composites based on the eutectic system BaO–Al2O3–SiO2–B2O3. J. Mater. Sci. Mater. Electron. 22, 238–243 (2011)CrossRef
    10.K. Wiik, Ph.D. dissertation. Norwegian University of Science and Technology, Trondheim, Norway, 1990
    11.V. Andersen, Investigation of Thermal Properties of Quartz for the Silicon Industry Under Reducing Atmosphere (NTNU Project Work in TMT 4500) (Norwegian University of Science and Technology, Trondheim, 2009)
    12.D. Adisty, Influence of Holding Time on Solid–Solid Reaction Between Quartz + SiC and Cristobalite + SiC (NTNU Report) (Norwegian University of Science and Technology, Trondheim, 2012)
    13.M. Nakamura, M. Arai, T. Otomo, Y. Inamura, S.M. Bennington, Dispersive excitation in different forms of SiO2. J. Non-Cryst. Solids 293–295, 377–382 (2001)CrossRef
    14.V.N. Sigaev, E.N. Smelyanskaya, V.G. Plotnichenko, V.V. Koltashev, A.A. Volkov, P. Pernice, Low-frequency band at 50 cm−1 in the Raman spectrum of cristobalite: identification of similar structural motifs in glasses and crystals of similar composition. J. Non-Cryst. Solids 248, 141–146 (1999)CrossRef
    15.E. Ringdalen, Changes in quartz during heating and the possible effects on Si production. JOM 67(2), 484–491 (2015)CrossRef
    16.O. San, C. Özgür, Investigation of a high stable-cristobalite ceramic powder from CaO–Al2O3–SiO2 system. J. Eur. Ceram. Soc. 29, 2945–2949 (2009)CrossRef
    17.A.X. Lu, Z.B. Ke, Z.H. Xiao, X.F. Zhang, X.Y. Li, Effect of heat-treatment condition on crystallization behavior and thermal expansion coefficient of Li2O–ZnO–Al2O3–SiO2–P2O5 glass–ceramics. J. Non-Cryst. Solids 353(28), 2692–2697 (2007)CrossRef
    18.Z.J. Qing, B. Li, H. Li, Y.X. Li, S.R. Zhang, Influence of Al2O3/SiO2 ratio on the microstructure and properties of low temperature co-fired CaO–Al2O3–SiO2 based ceramics. J. Mater. Sci. Mater. Electron. 25, 4206–4211 (2014)CrossRef
    19.S.O. Yoon, S.H. Shim, K.S. Kim, J.G. Park, S. Kim, Low-temperature preparation and microwave dielectric properties of ZBS glass–Al2O3 composites. Ceram. Int. 35(3), 1271–1275 (2009)CrossRef
    20.J. Du, B. Jones, M. Lanagan, Preparation and characterization of dielectric glass–ceramics in Na2O–PbO–Nb2O5–SiO2 system. Mater. Lett. 59(22), 2821–2826 (2005)CrossRef
  • 作者单位:Bo Li (1) (2) (3)
    Quanyin Long (1)
    Dinan Duan (1)

    1. School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu, 610054, China
    2. State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu, 610054, China
    3. National Engineering Research Center of Electromagnetic Radiation Control Materials, Chengdu, 610054, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1573-482X
文摘
BaO–B2O3–SiO2–Al2O3 (BBSA) glass/silica composites synthesized by solid-state reaction method were developed for CBGA packages, and the effects of sintering temperature (900–950 °C) on the phase transformation, microstructure, thermal, mechanical and electrical properties were investigated. XRD results show that the major phases quartz and cristobalite, and the minor phase BaSi2O5 are detected in BBSA composites. Furthermore, it was found that the quartz phase transforms to cristobalite phase at 930–940 °C. The formation of cristobalite phase with higher coefficient of thermal expansion (CTE) led to the increase of CTE value of BBSA composites. However, excessive cristobalite phase content would degrade the mechanical properties and the linearity of thermal expansion of the ceramics. BBSA composites sintered at 920 °C exhibited excellent properties: low dielectric constant and loss (εr = 6.2, tanδ = 10−4 at 1 MHz), high bending strength (179 MPa), high CTE (12.19 ppm/°C) as well as superior linearity of the thermal expansion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700