Preparation of new thermoluminescent material (100↿em>x)B2O3᾿em>xLi2O: Cu2+
详细信息    查看全文
  • 作者:ZEID A ALOTHMAN ; TANSIR AHAMAD ; MU NAUSHAD…
  • 关键词:Inorganic compounds ; glasses ; nanostructures ; transmission electron microscopy ; luminescence
  • 刊名:Bulletin of Materials Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:39
  • 期:1
  • 页码:331-336
  • 全文大小:1,888 KB
  • 参考文献:[1]Chen R and McKeever S W S 1997 Theory of thermoluminescence and related phenomena (Singapore: World Scientific)CrossRef
    [2]Furetta C 2003 Handbook of thermoluminescence (Singapore: World Scientific Publishing)CrossRef
    [3]McKeever S W S 1985 Thermoluminescence of solids (Cambridge: Cambridge University Press) Vol 69
    [4]Pode R B and Dhoble S J 1998 J. Phys. D: Appl. Phys. 31 146CrossRef
    [5]Morton D C and Forsythe E W 2001 Appl. Phys. Lett. 78 1400CrossRef
    [6]Daniels F, Boyd C A and Saunders D F 1953 Science 117 343CrossRef
    [7]Cameron J R, Daniels F, Johnson N and Kenney G 1961 Science 134 333CrossRef
    [8]Bos A J J 2001 Nucl. Instrum. Methods: Phys. Res. B, Beam Interact. Mater. Atoms 184 3CrossRef
    [9]Mathur V K, Lewandowski A C, Guardala N A and Price J L 1999 Radiat. Meas. 30 735CrossRef
    [10]Dhoble S J, Moharil S V and Rao T K G 2001 J. Lumin. 93 43CrossRef
    [11]Sangeeta S C and Sabharwal 2003, J. Lumin. 104 267CrossRef
    [12]Naranje S M and Moharil S V 1998 Phys. Status Solidi: Appl. Res. 165 489CrossRef
    [13]Stacy J J, Edelstein N and Mclaughlin R D 1972 J. Chem. Phys. 51 4980CrossRef
    [14]Grant R M and Cameron J R 1966 J. Appl. Phys. 37 3791CrossRef
    [15]Fang X, Zhai T, Gautam U K, Li L, Wu L, Bando Y and Golberg D 2011 Prog. Mater. Sci. 56 175CrossRef
    [16]Harish G S, Divya A, Kumar K S and Reddy P S 2013 Res. J. Phys. Sci. 1 7
    [17]Huy B T, Quang V X and Chau H T B 2008 J. Lumin. 128 601CrossRef
    [18]Li J, Hao J Q, Li C Y, Zhang C X, Tang Q, Zhang Y L, Su Q and Wang S B 2005 Radiat. Meas. 39 229CrossRef
    [19]Li J, Hao J Q, Zhang C X, Tang Q, Zhang Y L, Su Q and Wang S B 2004 Nucl. Instrum. Methods B 222 577CrossRef
    [20]Manma J and Sharma S K 2004 J. Mater. Sci. 39 6203CrossRef
    [21]Driscoll C M H, Fisher E S, Furetta C and Padovani R 1983 Radiat. Prot. Dosim. 6 305
    [22]Ogorodnikov I N, Isaenko L I, Kruzhalov A V and Porotnikov A V 2001 Radiat. Meas. 33 577CrossRef
    [23]Puppalwar S P, Dhoble S J, Dhoble N S and Kumar A 2012 Nucl. Instrum. Methods B 274 167CrossRef
    [24]Thanh N Q, Quang V X, Khoi N and Dien N D 2008 J. Sci. Math.–Phys. 24 97
    [25]Siegel I and Lorenc J A 1966 J. Chem. Phys. 45 2315CrossRef
    [26]Bates T 1962 Modern aspects of the vitreous state (London, UK: Butterworths) Vol 2
    [27]Jorgensen C K 1955 Acta Chem. Scand. 9 1362CrossRef
    [28]Ardelean I, Cozar O, Filip S, Pop V and Cenan I 1996 Solid State Commun. 100 609CrossRef
    [29]Ardelean I, Peteanu M, Filip S, Simon V and Györffy G 1997 Solid State Commun. 102 341CrossRef
    [30]Ciorcas F, Mendiratta S K, Ardelean I and Valente M A 2001 Eur. Phys. J. B—Condens. Matter Complex Systems 20 235
    [31]Jamal M, Shareefuddin M and Chary M N 1996 Bull. Electrochem. 12 686
    [32]Shareefuddin M, Vanaja K, Rao P M, Jamal M and Chary M N 1998 Phys. Chem. Glasses 39 184
    [33]Abragam A and Bleany B 1970 EPR of transition metal ions (Oxford: Clarendon)
    [34]Bleany B D, Bowers K D and Ingram D J E 1955 Proc. R. Soc. A 228 147CrossRef
    [35]Bates T and Mackenzie J D 1962 Modern aspects of the vitreous state (London: Butterworth) 2nd ed
    [36]Taoufik I, Haddad M, Nadiri A, Brochu R and Berger R 1999 J. Phys. Chem. Solids 60 701CrossRef
    [37]Esref T, Mehmet A, Mehmetand G and Mahmut U 2004 J. Coord. Chem. 57 583CrossRef
    [38]Kumar D N and Garg B S 2006 Spectrochim. Acta Part A 64 141CrossRef
    [39]Lochab S P, Pandey A, Sahare P D, Chauhan R S, Salah N and Ranjan R 2007 Phys. Status Solidi A 204 2416CrossRef
  • 作者单位:ZEID A ALOTHMAN (1)
    TANSIR AHAMAD (1)
    MU NAUSHAD (1)
    SAAD M ALSHEHRI (1)

    1. Department of Chemistry, College of Science, Bld #5, King Saud University, Riyadh, 11451, Saudi Arabia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Engineering, general
  • 出版者:Springer India
  • ISSN:0973-7669
文摘
The copper-doped lithium borate glass as a thermoluminescent (TL) material (100−x) B2O3xLi2O : Cu2+ (x= 20, 50 and 80 mol%) was prepared by the combustion method. The formation of (100 −x)B2O3xLi2O : Cu2+ after doping 2, 3 and 5 ppm Cu2+, was characterized by Fourier transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy. The TL characteristics of the synthesized material were studied at different parameters. The synthesized glass 50B2O3–50i2O : Cu2+ with 3 ppm of doped Cu2+, exhibited the superior TL properties than other glasses prepared in the current study. The spin-Hamiltonian parameters were assessed using the electron spin resonance spectra of 50B2O3–50Li2O : Cu2+ doped with 3 ppm Cu2+. The spin-Hamiltonian parameter values in the case of Cu2+ revealed that the ground state of Cu2+ was dx 2–y 2 orbital (\(^{\mathbf {2}}\text {B}_{\mathbf {1g}}\)) and the site symmetry around Cu2+ ion was distorted octahedral. TL glow curves were recorded with different heating rates (1, 2, 5, 10, 15, and 20∘C s−1) at the fixed dose 10 × 103 Gy. The results revealed that the glow peak position shifted to higher temperature with heating rate and the heating rate of 10∘C s−1 showed the superior TL response with highest glow peak which is very good for dosimetry purposes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700