A simple DEM assessment procedure for gully system analysis in the Lake Manyara area, northern Tanzania
详细信息    查看全文
  • 作者:Michael Maerker ; Geraldine Quénéhervé ; Felix Bachofer ; Simone Mori
  • 关键词:Soil erosion ; Gully erosion ; GIS ; DEM interpolation ; Terrain analysis ; Tanzania
  • 刊名:Natural Hazards
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:79
  • 期:1-supp
  • 页码:235-253
  • 全文大小:8,132 KB
  • 参考文献:Arun PV (2013) A comparative analysis of different DEM interpolation methods. Geod Cartogr 39(4):171–177. doi:10.​3846/​20296991.​2013.​859821 CrossRef
    ASTER GDEM Validation Team (2011) ASTER global digital elevation model: version 2. Summary of validation results. https://​igskmncnwb001.​cr.​usgs.​gov/​aster/​GDEM/​Summary_​GDEM2_​validation_​report_​final.​pdf . Accessed 5 April 2014
    Bachofer F, Quénéhervé G, Märker M (2014) The delineation of paleo-shorelines in the Lake Manyara basin using TerraSAR-X data. Remote Sens 6(3):2195–2212. doi:10.​3390/​rs6032195 CrossRef
    Bergner AGN, Strecker MR, Trauth MH, Deino AL, Gasse F, Blisniuk P, Dühnforth M (2009) Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa. Quat Sci Rev 28(25–26):2804–2816CrossRef
    Brooks AP, Shellberg J, Knight J, Spencer J (2009) Alluvial gully erosion: an example from the Mitchell fluvial megafan, Queensland, Australia. Earth Surf Proc Landforms 34(14):1951–1969. doi:10.​1002/​esp.​1883 CrossRef
    Capra A (2013) Ephemeral gully and gully erosion in cultivated land: a review. In: Lannon EC (ed) Drainage basins and catchment management: classification, modelling, and environmental assessment. Nova Science, Hauppauge, pp 109–141
    Casanova J, Hillaire-Marcel C (1992) Chronology and paleohydrology of late quaternary high lake levels in the Manyara basin (Tanzania) from isotopic data (18O, 13C, 14C, Th/U) on fossil stromatolites. Quat Res 38(2):205–226. doi:10.​1016/​0033-5894(92)90057-P CrossRef
    Conoscenti C, Agnesi V, Angileri S, Cappadonia C, Rotigliano E, Märker M (2013) A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily, Italy. Environ Earth Sci 70(3):1–17. doi:10.​1007/​s12665-012-2205-y CrossRef
    Costanzo D, Cappadonia C, Conoscenti C, Rotigliano E (2012) Exporting a Google Earth™ aided earth-flow susceptibility model: a test in central Sicily. Nat Hazards 61(1):103–114. doi:10.​1007/​s11069-011-9870-0 CrossRef
    D’Agostino V, Vianello A (2005) Identificazione morfodinamica del reticolo idrografico: integrazione fra rilievi di campo e tecniche GIS. Quaderni di Idronomia Montana 24:271–290 (in Italian)
    Dawson JB (1997) Neogene; recent rifting and volcanism in northern Tanzania; relevance for comparisons between the Gardar Province and the East African Rift valley. Mineral Mag 61(4):543–548CrossRef
    Desmet PJJ, Govers G (1996) A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J Soil Water Conserv 51(5):427–433
    Deus D, Gloaguen R, Krause P (2013) Water balance modeling in a semi-arid environment with limited in situ data using remote sensing in Lake Manyara, East African Rift, Tanzania. Remote Sens 5(4):1651–1680CrossRef
    DLR (2012) SRTM X-SAR digital elevation models: status: 2012-09-28. http://​eoweb.​dlr.​de:​8080/​eoweb-ng/​licenseAgreement​s/​DLR_​SRTM_​Readme.​pdf . Accessed 23 December 2013
    El Haj Tahir M, Kääb A, Xu C-Y (2010) Identification and mapping of soil erosion areas in the Blue Nile, Eastern Sudan using multispectral ASTER and MODIS satellite data and the SRTM elevation model. Hydrol Earth Syst Sci 14(7):1167–1178. doi:10.​5194/​hess-14-1167-2010 CrossRef
    Flügel W-A, Märker M, Moretti S, Rodolfi G, Sidorchuk A (2003) Integrating geographical information systems, remote sensing, ground truthing and modelling approaches for regional erosion classification of semi-arid catchments in South Africa. Hydrol Process 17(5):929–942. doi:10.​1002/​hyp.​1171 CrossRef
    Frankl A, Poesen J, Haile M, Deckers J, Nyssen J (2013) Quantifying long-term changes in gully networks and volumes in dryland environments: the case of Northern Ethiopia. Geomorphology 201:254–263. doi:10.​1016/​j.​geomorph.​2013.​06.​025 CrossRef
    Frost SR, Schwartz HL, Giemsch L, Morgan LE, Renne PR, Wildgoose MM, Sanaane C, Schrenk F, Harvati K (2012) Refined age estimates and Paleoanthropological investigations of the Manyara Beds, Tanzania. JASs 90:151–169
    Garbrecht J, Starks P (1995) Note on the use of USGS level 1 7.5-minute DEM coverages for landscape drainage analyses. Photogramm Eng Remote Sens 61(5):519–522
    Google (2012) http://​www.​google.​com/​intl/​en-US/​help/​terms_​maps.​html . Accessed 20 February 2014
    Gruber S, Peckham SD (2009) Land-surface parameters and objects in hydrology. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications. Developments in soil science, vol 33. Elsevier, Amsterdam, pp 171–194CrossRef
    Hancock GR, Evans KG (2010) Gully, channel and hillslope erosion. An assessment for a traditionally managed catchment. Earth Surf Proc Landforms 35(12):1468–1479. doi:10.​1002/​esp.​2043 CrossRef
    Hu J, Tan Q, Wang H, Xu X (2014) Accuracy assessment of DEM interpolation algorithms in different landform regions. J Basic Sci Eng 1(1):139–149
    Hutchinson MF (1986) Algorithm 642: a fast procedure for calculating minimum cross-validation cubic smoothing splines. ACM Trans Math Softw 12(2):150–153. doi:10.​1145/​6497.​214322 CrossRef
    Hutchinson MF (1989) A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J Hydrol 106(3–4):211–232. doi:10.​1016/​0022-1694(89)90073-5 CrossRef
    Keller CM, Hansen C, Alexander CS (1975) Archaeology and Paleoenvironments in the Manyara and Engaruka Basins, Northern Tanzania. Geogr Rev 65(3):364–376CrossRef
    Kosov BF, Nikol’skaya II, Zorina Y (1978) Eksperimental’nyye issledovaniya ovragoobrazovaniya. In: Makkaveev NI (ed) Eksperimental’naya geomorfologiya, vol 3. Moscow University, Moskva, pp 113–140 (in Russian)
    Moore ID, Burch GJ, Mackenzie DH (1988) Topographic effects on the distribution of surface soil water and the location of ephemeral gullies. Trans Am Soc Agric Eng 31(4):1098–1107CrossRef
    Mwanukuzi PK (2011) Impact of non-livelihood-based land management on land resources: the case of upland watersheds in Uporoto Mountains, South West Tanzania. Geogr J 177(1):27–34. doi:10.​1111/​j.​1475-4959.​2010.​00362.​x CrossRef
    Nelson A, Reuter HI, Gessler PE (2009) DEM production methods and sources. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications. Developments in soil science, vol 33. Elsevier, Amsterdam, pp 65–85CrossRef
    Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook, Washington
    Rengers FK, Tucker GE (2014) Analysis and modeling of gully headcut dynamics, North American high plains. J Geophys Res Earth Surf 119(5):983–1003. doi:10.​1002/​2013JF002962 CrossRef
    Reuter HI, Nelson A, Jarvis A (2007) An evaluation of void-filling interpolation methods for SRTM data. IJGIS 21(9):983–1008. doi:10.​1080/​1365881060116989​9
    Reuter HI, Hengl T, Gessler PE, Soille P (2009) Preparation of DEM for geomorphometric analysis. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications. Developments in soil science, vol 33. Elsevier, Amsterdam, pp 87–120CrossRef
    Ring U, Schwartz HL, Bromage TG, Sanaane C (2005) Kinematic and sedimentological evolution of the Manyara Rift in northern Tanzania, East Africa. Geol Mag 142(4):355–368. doi:10.​1017/​s001675680500084​1 CrossRef
    Schwartz HL, Renne PR, Morgan LE, Wildgoose MM, Lippert PC, Frost SR, Harvati K, Schrenk F, Sanaane C (2012) Geochronology of the Manyara Beds, northern Tanzania: new tephrostratigraphy, magnetostratigraphy and 40Ar/39Ar ages. Quat Geochronol 7:48–66. doi:10.​1016/​j.​quageo.​2011.​09.​002 CrossRef
    Shellberg JG, Brooks AP, Rose CW (2013) Sediment production and yield from an alluvial gully in northern Queensland, Australia. Earth Surf Proc Landforms 38(15):1765–1778. doi:10.​1002/​esp.​3414 CrossRef
    Sidorchuk A (1999) Dynamic and static models of gully erosion. CATENA 37(3–4):401–414. doi:10.​1016/​S0341-8162(99)00029-6 CrossRef
    Sidorchuk A (2006) Stages in gully evolution and self-organized criticality. Earth Surf Proc Landforms 31(11):1329–1344. doi:10.​1002/​esp.​1334 CrossRef
    Sidorchuk A, Märker M, Moretti S, Rodolfi G (2003) Gully erosion modelling and landscape response in the Mbuluzi River catchment of Swaziland. CATENA 50(2–4):507–525CrossRef
    Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33(2):309–319. doi:10.​1029/​96WR03137 CrossRef
    Tarboton DG, Bras RL, Rodriguez-Iturbe I (1991) On the extraction of channel networks from digital elevation data. Hydrol Process 5(1):81–100. doi:10.​1002/​hyp.​3360050107 CrossRef
    Trauth MH, Deino AL, Bergner AGN, Strecker MR (2003) East African climate change and orbital forcing during the last 175 kyr BP Earth Planet. Sci Lett 206(3–4):297–313
    Trauth MH, Larrasoaña JC, Mudelsee M (2009) Trends, rhythms and events in Plio-Pleistocene African climate. Quat Sci Rev 28(5–6):399–411CrossRef
    Vrieling A, Sterk G, Vigiak O (2006) Spatial evaluation of soil erosion risk in the West Usambara Mountains, Tanzania. Land Degrad Dev 17(3):301–319. doi:10.​1002/​ldr.​711 CrossRef
    Wilson JP, Gallant JC (eds) (2000) Terrain analysis: principles and applications. Wiley, New York
    Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation planning, vol 537. Agriculture Handbook, Washington
    Zakerinejad R, Maerker M (2014) Prediction of gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: a case study in the Mazayejan plain, southwest Iran. Geogr Fis Dinam Quat 37(1):67–76
  • 作者单位:Michael Maerker (1) (2)
    Geraldine Quénéhervé (3)
    Felix Bachofer (3)
    Simone Mori (4)

    1. Heidelberg Academy of Sciences and Humanities, Rümelinstr. 19-23, 72070, Tübingen, Germany
    2. Department of Earth Sciences, University of Florence, Via La Pira 4, 50121, Florence, Italy
    3. Institute of Geography, Tübingen University, Rümelinstr. 19-23, 72070, Tübingen, Germany
    4. Laboratory of Geo-Information Science and Remote Sensing, Wageningen University, Droevendaalsesteeg 3, 6708, Wageningen, The Netherlands
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Geophysics and Geodesy
    Geotechnical Engineering
    Civil Engineering
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-0840
文摘
Gully erosion is a major threat concerning landscape degradation in large areas along the northern Tanzanian Rift valley. It is the dominant erosion process producing large parts of the sediments that are effectively conducted into the river network. The study area is located in the Lake Manyara—Makuyuni River catchment, Arusha, northern Tanzania. During fieldwork, we measured topographic data of eight gully systems close to Makuyuni Town. The main focus of this study is to assess gully erosion dynamics using improved DEMs with original resolutions of 30 and 20 m, respectively. We assessed terrain characteristics to extract information on environmental drivers. To improve the DEM, we integrated information deduced from satellite images as well as from acquired GPS field data. Topographic indices such as Stream Power Index or Transport Capacity Index were derived from the re-interpolated DEM. To evaluate gully evolution, we assessed also the longitudinal slope profiles. Finally, the gully evolution phases of each gully were classified according to the concept proposed by Kosov et al. (Eksperimental’naya geomorfologiya, vol 3. Moscow University, Moskva, pp 113–140, 1978). The re-interpolated DEMs revealed a positive response especially for the more developed gullies. We show that the extraction of information on this spatial process scale based on “low-resolution” data is feasible with little additional fieldwork and image interpretation. In fact, areas identified as having a greater risk of gully erosion have been confirmed by observations and surveys carried out in the field.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700