Characterization of a New 1,3-1,4-β-Glucanase Gene from Bacillus tequilensis CGX5-1
详细信息    查看全文
  • 作者:Jinjing Wang (1)
    Chengtuo Niu (1)
    Xiaoling Liu (1)
    Xi Chen (1)
    Qi Li (1)
  • 关键词:Bacillus tequilensis CGX5 ; 1 ; 1 ; 3 ; 1 ; 4 ; β ; Glucanase ; bgl5 ; 1 ; Brewing
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:173
  • 期:3
  • 页码:826-837
  • 全文大小:
  • 参考文献:1. Michael, J. L., & Tom, W. (2001). / Brewing (2nd ed.). New York: Plenum Press.
    2. Zhao, J. Q., Shi, P. J., Yuan, T. Z., Huang, H. Q., Li, Z. Y., Meng, K., et al. (2012). Purification, gene cloning and characterization of an acidic beta-1,4-glucanase from Phialophora sp G5 with potential applications in the brewing and feed industries. / Journal of Bioscience and Bioengineering, 114, 379-84. CrossRef
    3. Bamforth, C. W., & Martin, H. L. (1983). The degradation of β-glucan during malting and mashing: the role of β-glucanase. / Journal of Institute of Brewing, 89, 303-07. CrossRef
    4. Akiyama, T., Jin, S., Yoshida, M., Hoshino, T., Opassiri, R., & Cairns, J. R. K. (2009). Expression of an endo-(1,3;1,4)-beta-glucanase in response to wounding, methyl jasmonate, abscisic acid and ethephon in rice seedlings. / Journal of Plant Physiology, 166, 1814-825. CrossRef
    5. Lehtovaara, B. C., & Gu, F. X. (2011). Pharmacological, structural, and drug delivery properties and applications of 1,3-beta-glucans. / Journal of Agricultural and Food Chemistry, 59, 6813-828. CrossRef
    6. Planas, A. (2000). Bacterial 1,3-1,4-β-glucanases: structure, function and protein engineering. / Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1543, 361-82. CrossRef
    7. Owusu-Asiedu, A., Simmins, P. H., Brufau, J., Lizardo, R., & Peron, A. (2010). Effect of xylanase and beta-glucanase on growth performance and nutrient digestibility in piglets fed wheat-barley-based diets. / Livestock Science, 134, 76-8. CrossRef
    8. Sun, J. T., Wang, H. X., Lv, W. P., Ma, C. Y., Lou, Z. X., Yao, H., et al. (2012). Cloning and expression of a thermostable beta-1,3-1,4-glucanase from / Bacillus amyloliquefaciens ATCC 23350. / Annals of Microbiology, 62, 1235-242. CrossRef
    9. Kim, Y. R., Kim, E. Y., Lee, J. M., Kim, J. K., & Kong, I. S. (2013). Characterisation of a novel / Bacillus sp SJ-10 beta-1,3-1,4-glucanase isolated from jeotgal, a traditional Korean fermented fish. / Bioprocess and Biosystems Engineering, 36, 721-27. CrossRef
    10. Jaskari, J., Kontula, P., Siitonen, A., Jousimies-Somer, H., Mattila-Sandholm, T., & Poutanen, K. (1998). Oat beta-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. / Applied Microbiology and Biotechnology, 49, 175-81. CrossRef
    11. Bode, L. (2009). Human milk oligosaccharides: prebiotics and beyond. / Nutrition Reviews, 67, S183–S191. CrossRef
    12. Menon, V., Divate, R., & Rao, M. (2011). Bioethanol production from renewable polymer lichenan using lichenase from an alkalothermophilic Thermomonospora sp and thermotolerant yeast. / Fuel Processing Technology, 92, 401-06. CrossRef
    13. Nghiem, N., Hicks, K., Johnston, D., Senske, G., Kurantz, M., Li, M., et al. (2010). Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process. / Biotechnology for Biofuels, 3, 8. CrossRef
    14. Nghiem, N. P., Ramirez, E. C., McAloon, A. J., Yee, W., Johnston, D. B., & Hicks, K. B. (2011). Economic analysis of fuel ethanol production from winter hulled barley by the EDGE (enhanced dry grind enzymatic) process. / Bioresource Technology, 102, 6696-701. CrossRef
    15. Keitel, T., Simon, O., Borriss, R., & Heinemann, U. (1993). Molecular and active-site structure of a / Bacillus 1,3-1,4-beta-glucanase. / Proceedings of the National Academy of Sciences, 90, 5287-291. CrossRef
    16. Hahn, M., Pons, J., Planas, A., Querol, E., & Heinemann, U. (1995). Crystal structure of / Bacillus licheniformis 1,3-1,4-β-d-glucan 4-glucanohydrolase at 1.8 ? resolution. / FEBS Letters, 374, 221-24. CrossRef
    17. Hahn, M., Olsen, O., Politz, O., Borriss, R., & Heinemann, U. (1995). Crystal structure and site-directed mutagenesis of / Bacillus macerans Endo-1,31,4-β-glucanase. / Journal of Biological Chemistry, 270, 3081-088. CrossRef
    18. Sandgren, M., Shaw, A., Ropp, T. H., Wu, S., Bott, R., Cameron, A. D., et al. (2001). The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 ? resolution. / Journal of Molecular Biology, 308, 295-10. CrossRef
    19. Tsai, L.-C., Shyur, L.-F., Lee, S.-H., Lin, S.-S., & Yuan, H. S. (2003). Crystal structure of a natural circularly permuted jellyroll protein: 1,3-1,4-β-d-glucanase from fibrobacter succinogenes. / Journal of Molecular Biology, 330, 607-20. CrossRef
    20. Wen, T.-N., Chen, J.-L., Lee, S.-H., Yang, N.-S., & Shyur, L.-F. (2005). A truncated fibrobacter succinogenes 1,3??-,4-β-d-glucanase with improved enzymatic activity and thermotolerance. / Biochemistry, 44, 9197-205. CrossRef
    21. Jiufu Qin, W. G., & Li, Q. (2010). Improvement of thermostability of β-1,3-1,4-glucanase from / Bacillus amyloliquefaciens BS5582 through in vitro evolution. / Chinese Journal of Biotechnology, 26, 9.
    22. Jiufu Qin, Q. L., & Li, Y. (2010). Thermostable Bacillus amyloliquefaciens β-1,3-1,4-glucanase: in vitro evolution. / Journal of Biotechnology, 150, 2.
    23. Jia, H., Li, Y., Liu, Y., Yan, Q., Yang, S., & Jiang, Z. (2012). Engineering a thermostable β-1,3-1,4-glucanase from Paecilomyces thermophila to improve catalytic efficiency at acidic pH. / Journal of Biotechnology, 159, 50-5. CrossRef
    24. Qiao, J. Y., Dong, B., Li, Y. H., Zhang, B., & Cao, Y. H. (2009). Cloning of a beta-1,3-1,4-glucanase gene from / Bacillus subtilis MA139 and its functional expression in Escherichia coli. / Applied Biochemistry and Biotechnology, 152, 334-42. CrossRef
    25. Sun, J., Wang, H., Lv, W., Ma, C., Lou, Z., & Dai, Y. (2011). Construction and characterization of a fusion beta-1,3-1,4-glucanase to improve hydrolytic activity and thermostability. / Biotechnology Letters, 33, 2193-199. CrossRef
    26. Sneath, P. H. A. (1986). Endospore-forming Gram-positive rods and cocci. In P. H. A. Sneath (Ed.), / Bergey's manual of systematic bacteriology. Baltimore: Willams and Wilkins.
    27. Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., et al. (1997). The complete genome sequence of the Gram-positive bacterium / Bacillus subtilis. Nature, 390, 249-56. CrossRef
    28. Li Yongxian, X. Y., & Zhu, L. J. (2009). Optimization of cloning and expression of β-glucanase gene from / Bacillus amyloliquefaciens. Chinese Journal of Biotechnology, 25.
    29. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. / Analytical Chemistry, 31, 426-28. CrossRef
    30. Mm, B. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. / Analytical Biochemistry, 72, 7.
    31. Sambrook, J., Fritsch, E., & Maniatis, T. (2001). / Molecular cloning, a laboratory manual. Cold Spring Harbor (3rd ed.). New York: Cold Spring Harbor Laboratory Press.
    32. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. / Journal of the American Chemical Society, 56, 658-66. CrossRef
    33. Whitmore, L., & Wallace, B. A. (2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. / Nucleic Acids Research, 32, W668–W673. CrossRef
    34. Whitmore, L., & Wallace, B. A. (2008). Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. / Biopolymers, 89, 392-00. CrossRef
    35. Gatson, J. W., Benz, B. F., Chandrasekaran, C., Satomi, M., Venkateswaran, K., & Hart, M. E. (2006). / Bacillus tequilensis sp nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. / International Journal of Systematic and Evolutionary Microbiology, 56, 1475-484. CrossRef
    36. Furtado, G. P., Ribeiro, L. F., Santos, C. R., Tonoli, C. C., de Souza, A. R., Oliveira, R. R., et al. (2011). Biochemical and structural characterization of a beta-1,3-1,4-glucanase from / Bacillus subtilis 168. / Process Biochemistry, 46, 1202-206. CrossRef
    37. Shan, Q., Bao, H., Wang, W., Yang, H., & Hu, S. (2008). Cloning of β-Glucanase gene from / Bacillus licheniformis WS-6 and expression. / Biotechology Bulletin, 6, 5- ( / in Chinese).
    38. Tang, Y., Yang, S., Yan, Q., Zhou, P., Cui, J., & Jiang, Z. (2012). Purification and characterization of a novel beta-1,3-1,4-glucanase (lichenase) from thermophilic / Rhizomucor miehei with high specific activity and its gene sequence. / Journal of Agricultural and Food Chemistry, 60, 2354-361. CrossRef
    39. Cheng, R., Xu, L., Wang, S., Wang, Y. and Zhang, J. (2013) Recombinant expression and characterization of an acid-, alkali- and salt-tolerant beta-1,3-1,4-glucanase from / Paenibacillus sp. S09. Biotechnol Lett.
  • 作者单位:Jinjing Wang (1)
    Chengtuo Niu (1)
    Xiaoling Liu (1)
    Xi Chen (1)
    Qi Li (1)

    1. Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
  • ISSN:1559-0291
文摘
1,3-1,4-β-Glucanase received great interest due to its application in brewing and feed industries. Application of 1,3-1,4-β-glucanase in brewing industry helps make up for the defect that plant-derived β-glucanases are heat-sensitive. A new strain, CGX5-1, exhibited remarkable 1,3-1,4-β-glucanase, was isolated from Asian giant hornet nest and identified Bacillus tequilensis. Moreover, a new 1,3-1,4-β-glucanase gene from B. tequilensis was cloned and measured to be 720?bp encoding 239 amino acids, with a predicted molecular weight of 26.9?kDa. After expressed in Escherichia coli BL21, active recombinant enzyme of 24?kDa was detected in the supernatant of cell culture, with the activity of 2,978.2 U/mL. The new enzyme was stable in the pH?5.0-.5 with the highest activity measured at pH?6.0. Moreover, it is thermostable within 45 to 60?°C. The property of the new recombinant enzyme makes this enzyme a broad prospect in brewing industry. Moreover, this is the first report on 1,3-1,4-β-glucanase produced by B. tequilensis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700