Rhizobacteria isolated from common bean in southern Italy as potential biocontrol agents against common bacterial blight
详细信息    查看全文
  • 作者:Annalisa Giorgio ; Pietro Lo Cantore…
  • 关键词:Common bean ; Xanthomonas axonopodis pv. phaseoli ; Biological control agents ; Pseudomonas spp. ; Bacillus spp.
  • 刊名:European Journal of Plant Pathology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:144
  • 期:2
  • 页码:297-309
  • 全文大小:909 KB
  • 参考文献:Achouak, W., Sutra, L., Heulin, T., Meyer, J.-M., Fromin, N., Degraeve, S., Christen, R., & Gardan, L. (2000). Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. International Journal of Systematic and Evolutionary Microbiology, 50, 9鈥?8.PubMed CrossRef
    Alhussaen, K. M. (2012). Effect of soil acidity on diseases caused by Pythium ultimum and Fusarium oxysporum on tomato plants. Journal of Biological Sciences, 12, 416鈥?20.CrossRef
    Andersson, P. F., Levenfors, J., & Broberg, A. (2012). Metabolites from Pseudomonas brassicacearum with activity against the pink snow mould causing pathogen Microdochium nivale. BioControl, 57, 463鈥?69.CrossRef
    Asensio-S-Manzanera, C. M., Asensio, C., & Singh, S. P. (2006). Gamete selection for resistance to common and halo bacterial blights in dry bean intergene pool populations. Crop Science, 46, 131鈥?35.CrossRef
    Askeland, R. A., & Morrison, S. M. (1983). Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Applied and Environmental Microbiology, 45, 1802鈥?807.PubMedCentral PubMed
    Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Tsyganov, V. E., Borisov, A. Y., Tikhonovich, I. A., Kluge, C., Preisfeld, A., Dietz, K. J., & Stepanok, V. V. (2001). Characterisation of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, 47, 642鈥?52.PubMed CrossRef
    Benizri, E., Baudoin, E., & Guckert, A. (2001). Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Science and Technology, 11, 557鈥?74.CrossRef
    Bertagnolli, B. L., Dal Soglio, F. K., & Sinclair, J. B. (1996). Extracellular enzyme profiles of the fungal pathogen Rhizoctonia solani isolate 2B-12 and of two antagonists, Bacillus megaterium strain B153-2-2 and Trichoderma harzianum isolate Th008. Possible correlation with inhibition of growth and biocontrol. Physiological and Molecular Plant Pathology, 48, 145鈥?60.CrossRef
    Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., & Defez, R. (2006). Indole-3-acetic acid improves Escherichia coli鈥檚 defences to stress. Archives of Microbiology, 185, 373鈥?82.PubMed CrossRef
    Bienfait, H. F. (1989). Prevention of stress in iron metabolism of plants. Acta Botanica Neerlandica, 38, 105鈥?29.CrossRef
    Blumer, C., & Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173, 170鈥?77.PubMed CrossRef
    Cappuccino, J. G., & Sherman, N. (2010). Microbiology, a laboratory manual. California: The Benjamin / Cummings Publishing Co.
    Chakraborty, U., Chakraborty, B., & Basnet, M. (2006). Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. Journal of Basic Microbiology, 46, 186鈥?95.PubMed CrossRef
    Chung, S., Aslam, Z., Kim, S. W., Kim, G. G., Kang, H. S., Ahn, J. W., & Chung, Y. R. (2008). A bacterial endophyte, Pseudomonas brassicacearum YC5480, isolated from the root of Artemisia sp. producing antifungal and phytotoxic compounds. Plant Pathology Journal, 24, 461鈥?68.CrossRef
    Conti, E., Flaibani, A., O鈥橰egan, M., & Sutherland, I. W. (1994). Alginate from Pseudomonas fluorescens and P. putida: production and properties. Microbiology, 140, 1125鈥?132.CrossRef
    Copeland, A., Lucas, S., Lapidus, A., Barry, K., Detter, J. C., Glavina del Rio, T., Dalin, E., Tice, H., Pitluck, S., Chain, P., Malfatti, S., Shin, M., Vergez, L., Schmutz, J., Larimer, F., Land, M., Hauser, L., Kyrpides, N., & Richardson, P. (2008). Complete sequence of Pseudomonas putida W619 EMBL/GenBank/DDBJ databases.
    Corr锚a, B. O., Schafer, J. T., & Moura, A. B. (2014). Spectrum of biocontrol bacteria to control leaf, root and vascular diseases of dry bean. Biological Control, 72, 71鈥?5.CrossRef
    Eppinger, M., Bunk, B., Johns, M. A., Edirisinghe, J. N., Kutumbaka, K. K., Koenig, S. S. K., Creasy, H. H., Rosovitz, M. J., Riley, D. R., Daugherty, S., Martin, M., Elbourne, L. D. H., Paulsen, I., Biedendieck, R., Braun, C., Grayburn, S., Dhingra, S., Lukyanchuk, V., Ball, B., Ul-Qamar, R., Seibel, J., Bremer, E., Jahn, D., Ravel, J., & Vary, P. S. (2011). Genome sequences of the biotechnologically important Bacillus megaterium strains QM B1551 and DSM319. Journal of Bacteriology, 193, 4199鈥?213.PubMedCentral PubMed CrossRef
    Goodwin, P. H., & Sopher, C. R. (1994). Brown pigmentation of Xanthomonas campestris pv. phaseoli associated with homogentisic acid. Canadian Journal of Microbiology, 40, 28鈥?4.CrossRef
    Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indole acetic acid. Plant Physiology, 26, 192鈥?95.PubMedCentral PubMed CrossRef
    Haas, D., & D茅fago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307鈥?19.PubMed CrossRef
    Hardoim, P. R., van Overbeek, L. S., & van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16, 463鈥?71.PubMed CrossRef
    Iacobellis, N. S., Shanmugaiah, V., & Lo Cantore, P. (2009). Rhizobacteria for the biological control of common bacterial blight of bean. Journal of Plant Pathology, 91, S4.34.
    Jacques, M. A., Josi, K., Darrasse, A., & Samson, R. (2005). Xanthomonas axonopodis pv. phaseoli var. fuscans is aggregated in stable biofilm population sizes in the phyllosphere of field-grown Beans. Applied and Environmental Microbiology, 71, 2008鈥?015.PubMedCentral PubMed CrossRef
    King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstrating of phycocyanin and fluorescein. Journal of Laboratory and Clinical Medicine, 44, 301鈥?07.PubMed
    Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Current Microbiology, 4, 317鈥?20.CrossRef
    Knowles, C. J. (1976). Microorganisms and cyanide. Bacteriology Reviews, 40, 652鈥?80.
    Kyoung, J. H., & Kim, S. D. (2005). An antifungal antibiotic purified from Bacillus megaterium KL39, a biocontrol agent of red-pepper phytophthora-blight disease. Journal of Microbiology and Biotechnology, 15, 1001鈥?010.
    Lelliott, R. A., & Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases of plants (Vol. 2). London: British Society for Plant Pathology & Blackwell.
    Lisboa, M. P., Bonatto, D., Bizani, D., Henriques, J. A. P., & Brandelli, A. (2006). Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. International Microbiology, 9, 111鈥?18.PubMed
    Lo Cantore, P., Lazzaroni, S., Coraiola, M., Dalla Serra, M., Cafarchia, C., Menestrina, G., Evidente, A., & Iacobellis, N. S. (2006). Biological characterization of WLIP produced by Pseudomonas 鈥渞eactans鈥?/em> NCPPB1311. Molecular Plant-Microbe Interactions, 19, 1113鈥?120.PubMed CrossRef
    Lo Cantore, P., Figliuolo, G., & Iacobellis, N. S. (2010). Response of traditional cultivars of the 鈥淔agioli di Sarconi鈥?beans to artificial inoculation with common bacterial blight causal agents. Phytopathologia Mediterranea, 49, 89鈥?4.
    Lorck, H. (1948). Production of hydrocyanic acid by bacteria. Physiologia Plantarum, 1, 142鈥?46.CrossRef
    Lugtenberg, B. J. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by pseudomonas. Annual Review of Phytopathology, 39, 461鈥?90.PubMed CrossRef
    Maduell, P., Armengol, G., Llagostera, M., Lindow, S., & Orduz, S. (2007). Immigration of Bacillus thuringiensis to bean leaves from soil inoculum or distal plant parts. Journal of Applied Microbiology, 103, 2593鈥?600.PubMed CrossRef
    Martinez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G., & Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition, 10, 293鈥?19.CrossRef
    Matsukawa, E., Nakagawa, Y., Iimura, Y., & Hayakawa, M. (2007). A new enrichment method for the selective isolation of streptomycetes from the root surfaces of herbaceous plants. Actinomycetologica, 21, 66鈥?9.CrossRef
    Miklas, P., Fourie, N., Trapp, D., Larsen, J., Chavarro, R. C., Blair, C., & Gepts, P. (2011). Genetic characterization and molecular mapping gene for resistance to halo blight in common bean. Crop Science, 51, 2439鈥?448.CrossRef
    National Research Council. (2010). Toward sustainable agricultural systems in the 21st century. Washington: The National Academies Press.
    Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170, 265鈥?70.PubMed CrossRef
    Nautiyal, C. S., Johri, J. K., & Singh, H. B. (2002). Survival of the rhizosphere-competent biocontrol strain Pseudomonas fluorescens NBRI2650 in the soil and phytosphere. Canadian Journal of Microbiology, 48, 588鈥?01.CrossRef
    Nzungize, J. R., Lyumugabe, F., Busogoro, J. P., & Baudoin, J. P. (2012). Pythium root rot of common bean: biology and control methods. Biotechnologie, Agronomie, Soci茅t茅 et Environnement, 16, 405鈥?13.
    Ongena, M., Jourdan, E., Sch盲fer, M., Kech, C., Budzikiewicz, H., Luxen, A., & Thonart, P. (2005). Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Molecular Plant-Microbe Interactions, 18, 562鈥?69.PubMed CrossRef
    Opio, A. F., Allen, D. J., & Teri, J. M. (1996). Pathogenic variation in Xanthomonas campestris pv. phaseoli, the causal agent of common bacterial blight in Phaseolus beans. Plant Pathology, 45, 1126鈥?133.CrossRef
    Ortet, P., Barakat, M., Lalaouna, D., Fochesato, S., Barbe, V., Vacherie, B., & Achouak, W. (2011). Complete genome sequence of a beneficial plant root-associated bacterium Pseudomonas brassicacearum. Journal of Bacteriology, 19, 3146.CrossRef
    Osdaghi, E., Shams-Bakhsh, M., Alizadeh, A., Lak, M. R., & Hatami Maleki, H. (2011). Induction of resistance in common bean by Rhizobium leguminosarum bv. phaseoli and decrease of common bacterial blight. Phytopathologia Mediterranea, 50, 45鈥?4.
    Parke, J. L. (1991). Root colonization by indigenous and introduced microorganisms. In D. L. Keister & P. B. Gregan (Eds.), The rhizosphere and plant growth (pp. 33鈥?2). Dordrecht: Kluwer Academic Publishers.CrossRef
    Perell贸, A. E., Moreno, M. V., M贸naco, C., Sim贸n, M. R., & Cordo, C. (2009). Biological control of Septoria tritici blotch on wheat by Trichoderma spp. under field conditions in Argentina. BioControl, 54, 113鈥?22.CrossRef
    Ramadoss, D., Lakkineni, V. K., Bose, P., Ali, S., & Annapurna, K. (2013). Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. SpringerPlus, 2, 1鈥?.CrossRef
    Rashid, M., Khalil, S., Ayub, N., Alam, S., & Latif, F. (2004). Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Sciences, 7, 187鈥?96.CrossRef
    Ross, I. L., Alami, Y., Harvey, P. R., Achouak, W., & Ryder, M. H. (2000). Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Applied and Environmental Microbiology, 66, 1609鈥?616.PubMedCentral PubMed CrossRef
    Rudolph, K. (1993). Infection of the plant by Xanthomonas. In J. Swings & E. Civerolo (Eds.), Xanthomonas (pp. 193鈥?64). London: Chapman & Hall.CrossRef
    Ruggiero, C. E., Boukhalfa, H., Forsythe, J. H., Lack, J. G., Hersman, L. E., & Neu, M. P. (2005). Actinide and metal toxicity to prospective bioremediation bacteria. Environmental Microbiology, 7, 88鈥?7.PubMed CrossRef
    Saettler, A. W. (1991). Diseases caused by bacteria. In R. Hall (Ed.), Compendium of bean diseases (pp. 29鈥?2). St. Paul: APS Press.
    Safronova, V. I., Stepanok, V. V., Engqvist, G. L., Alekseyev, Y. V., & Belimov, A. A. (2006). Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biology and Fertility of Soils, 42, 267鈥?72.CrossRef
    San San Yu, Z. K., Kyaw, E. P., & Lynn, T. M. (2011). Accumulation of ammonia in culture broth by wild-type nitrogen fixing bacterium, Stenotrophomonas maltophilia. International Journal of Applied Biology and Pharmaceutical Technology, 2, 72鈥?7.
    Schachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiology, 116, 447鈥?53.PubMedCentral PubMed CrossRef
    Schroth, M. N., & Hancock, J. G. (1982). Disease-suppressive soil and root-colonizing bacteria. Science, 216, 1376鈥?381.PubMed CrossRef
    Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47鈥?6.PubMed CrossRef
    Sikorski, J., Jahr, H., & Wackernagel, W. (2001). The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural soil indicates development under purifying selection pressure. Environmental Microbiology, 3, 176鈥?86.PubMed CrossRef
    Silva, H. S. A., Romeiro, R. D. S., & Mounteer, A. (2003). Development of a root colonization bioassay for rapid screening of rhizobacteria for potential biocontrol agents. Journal of Phytopathology, 151(1), 42鈥?6.CrossRef
    Teather, R. M., & Wood, P. J. (1982). Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43(4), 777鈥?80.PubMedCentral PubMed
    Vallet-Gely, I., Novikov, A., Augusto, L., Liehl, P., Bolbach, G., P茅chy-Tarr, M., & Lemaitre, B. (2010). Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Applied and Environmental Microbiology, 76, 910鈥?21.PubMedCentral PubMed CrossRef
    Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243鈥?54.CrossRef
    von Tersch, M. A., & Carlton, B. C. (1983). Bacteriocin from bacillus megaterium ATCC 19213: comparative studies with megacin A-216. Journal of Bacteriology, 155, 866鈥?71.
    Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697鈥?03.PubMedCentral PubMed
    Weise, T., Kai, M., & Piechulla, B. (2013). Bacterial ammonia causes significant plant growth inhibition. Plos One, 8, 1鈥?.CrossRef
    Weller, D. M., & Saettler, A. W. (1978). Rifampin-resistant Xanthomonas phaseoli var. fuscans and Xanthomonas phaseoli: tools for field study of bean blight bacteria. Phytopathology, 68, 778鈥?81.CrossRef
    Widmer, F., Seidler, R. J., Gillevet, P. M., Watrud, L. S., & Di Giovanni, G. D. (1998). A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Applied and Environmental Microbiology, 64, 2545鈥?553.PubMedCentral PubMed
    Zanatta, Z. G., Moura, A. B., Maia, L. C., & Santos, A. S. (2007). Bioassay for selection of biocontroller bacteria against bean common blight (Xanthomonas axonopodis pv. phaseoli). Brazilian Journal of Microbiology, 38, 511鈥?15.CrossRef
  • 作者单位:Annalisa Giorgio (1)
    Pietro Lo Cantore (1)
    Vellasamy Shanmugaiah (2)
    Daniela Lamorte (1)
    Nicola Sante Iacobellis (1)

    1. Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali (SAFE), Universit脿 degli Studi della Basilicata, viale dell鈥楢teneo Lucano 10, 85100, Potenza, Italy
    2. Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Pathology
    Plant Sciences
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-8469
文摘
Common bacterial blight, caused by Xanthomonas axonopodis pv. phaseoli and its variety fuscans, leads to important crop loss and, due to limited bactericides availability and effectiveness in agriculture practices, it appears necessary to develop alternative control strategies. The aim of this study was to assess the potential of bacteria isolated from bean rhizosphere to control the above mentioned disease. Sixty out of 162 bean rhizobacteria inhibited the growth in vitro of selected virulent strains of both varieties of X. a. pv. phaseoli and, when applied to seeds before sowing, six of them reduced disease symptoms on bean in in vitro and greenhouse pathogenicity assays. In order to deepen bacteria characterization, the six rhizobacteria were evaluated for lytic enzymes, hydrogen cyanide, ammonia, siderophores, indoles production, for inorganic phosphates solubilisation and environmental adaptability in terms of salinity, pH and temperature gradients variation. Altogether the findings of this study indicate the above six rhizobacteria as potential biocontrol candidates. Keywords Common bean Xanthomonas axonopodis pv. phaseoli Biological control agents Pseudomonas spp. Bacillus spp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700