The Heterogeneous Mineral Content of Bone—Using Stochastic Arguments and Simulations to Overcome Experimental Limitations
详细信息    查看全文
  • 作者:C. Lukas (1)
    P. Kollmannsberger (1)
    D. Ruffoni (2)
    P. Roschger (3)
    P. Fratzl (1)
    R. Weinkamer (1) richard.weinkamer@mpikg.mpg.de
  • 关键词:Bone – Mineralization – Material heterogeneity – Counting statistics – Bone mineralization density distribution – Quantitative backscattered electron imaging – Tikhonov regularization
  • 刊名:Journal of Statistical Physics
  • 出版年:2011
  • 出版时间:July 2011
  • 年:2011
  • 卷:144
  • 期:2
  • 页码:316-331
  • 全文大小:781.2 KB
  • 参考文献:1. Seeman, E., Delmas, P.D.: Mechanisms of disease—bone quality—the material and structural basis of bone strength and fragility. N. Engl. J. Med. 354, 2250–2261 (2006)
    2. Borah, B., Gross, G.J., Dufresne, T.E., Smith, T.S., Cockman, M.D., Chmielewski, P.A., Lundy, M.W., Hartke, J.R., Sod, E.W.: Three-dimensional microimaging (MRμI and μCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat. Rec. 265, 101–110 (2001)
    3. Boivin, G., Meunier, P.J.: The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos. Int. 14, S19–S24 (2003)
    4. Roschger, P., Paschalis, E.P., Fratzl, P., Klaushofer, K.: Bone mineralization density distribution in health and disease. Bone 42, 456–466 (2008)
    5. Parfitt, A.M.: Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J. Cell. Biochem. 55, 273–286 (1994)
    6. Parfitt, A.M.: Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30, 5–7 (2002)
    7. Currey, J.: Bones: Structure and Mechanics. Princeton University Press, Princeton (2002)
    8. Fratzl, P., Weinkamer, R.: Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007)
    9. Robling, A.G., Castillo, A.B., Turner, C.H.: Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng. 8, 455–498 (2006)
    10. Riggs, B.L., Parfitt, A.M.: Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J. Bone Miner. Res. 20, 177–184 (2005)
    11. Turner, C.H.: Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos. Int. 13, 97–104 (2002)
    12. Nuzzo, S., Lafage-Proust, M.H., Martin-Badosa, E., Boivin, G., Thomas, T., Alexandre, C., Peyrin, F.: Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment. J. Bone Miner. Res. 17, 1372–1382 (2002)
    13. Ito, M., Ejiri, S., Jinnai, H., Kono, J., Ikeda, S., Nishida, A., Uesugi, K., Yagi, N., Tanaka, M., Hayashi, K.: Bone structure and mineralization demonstrated using synchrotron radiation computed tomography (SR-CT) in animal models: preliminary findings. J. Bone Miner. Metab. 21, 287–293 (2003)
    14. Borah, B., Ritman, E.L., Dufresne, T.E., Jorgensen, S.M., Liu, S., Sacha, J., Phipps, R.J., Turner, R.T.: The effect of risedronate on bone mineralization as measured by micro-computed tomography with synchrotron radiation: correlation to histomorphometric indices of turnover. Bone 37, 1–9 (2005)
    15. Boivin, G., Meunier, P.J.: The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif. Tissue Int. 70, 503–511 (2002)
    16. Follet, H., Boivin, G., Rumelhart, C., Meunier, P.J.: The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone 34, 783–789 (2004)
    17. Boivin, G., Bala, Y., Doublier, A., Farlay, D., Ste-Marie, L.G., Meunier, P.J., Delmas, P.D.: The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone 43, 532–538 (2008)
    18. Boyde, A., Reid, S.A.: A new method of scanning electron-microscopy for imaging biological tissues. Nature 302, 522–523 (1983)
    19. Reid, S.A., Boyde, A.: Changes in the mineral density distribution in human-bone with age—image-analysis using backscattered electrons in the SEM. J. Bone Miner. Res. 2, 13–22 (1987)
    20. Skedros, J.G., Bloebaum, R.D., Bachus, K.N., Boyce, T.M., Constantz, B.: Influence of mineral-content and composition on graylevels in backscattered electron images of bone. J. Biomed. Mater. Res. 27, 57–64 (1993)
    21. Roschger, P., Plenk, H., Klaushofer, K., Eschberger, J.: A new scanning electron-microscopy approach to the quantification of bone-mineral distribution—backscattered electron image grey-levels correlated to calcium K alpha-line intensities. Scanning Microsc. 9, 75–88 (1995)
    22. Bloebaum, R.D., Skedros, J.G., Vajda, E.G., Bachus, K.N., Constantz, B.R.: Determining mineral content variations in bone using backscattered electron imaging. Bone 20, 485–490 (1997)
    23. Roschger, P., Fratzl, P., Eschberger, J., Klaushofer, K.: Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23, 319–326 (1998)
    24. Roschger, P., Gupta, H.S., Berzanovich, A., Ittner, G., Dempster, D.W., Fratzl, P., Cosman, F., Parisien, M., Lindsay, R., Nieves, J.W., Klaushofer, K.: Constant mineralization density distribution in cancellous human bone. Bone 32, 316–323 (2003)
    25. Busse, B., Hahn, M., Soltau, M., Zustin, J., Puschel, K., Duda, G.N., Amling, M.: Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae. Bone 45, 1034–1043 (2009)
    26. Vajda, E.G., Skedros, J.G.: Letter to the editor. Bone 24, 619–620 (1999)
    27. Roschger, P., Fratzl, P., Eschberger, J., Klaushofer, K.: Response to the letter to the editor by E.G. Vajda and J.G. Skedros. Bone 24, 620–621 (1999)
    28. Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Roming, A.D. Jr., Lyman, C.E., Fiori, C., Lifshin, E.: Scanning Electron Microscopy and X-Ray Microanalysis, 2nd edn. Springer, New York (1992)
    29. Hansen, P.C.: Regularization tools version 4.0 for MATLAB 7.3. Numer. Algorithms 46, 189–194 (2007)
    30. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. Math. Appl. 375, 332 (1996)
    31. Golub, G., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14, 403–420 (1970)
    32. Ruffoni, D., Fratzl, P., Roschger, P., Klaushofer, K., Weinkamer, R.: The bone mineralization density distribution as a fingerprint of the mineralization process. Bone 40, 1308–1319 (2007)
    33. Ruffoni, D., Fratzl, P., Roschger, P., Phipps, R., Klaushofer, K., Weinkamer, R.: Effect of temporal changes in bone turnover on the bone mineralization density distribution: a computer simulation study. J. Bone Miner. Res. 23, 1905–1914 (2008)
    34. Misof, B.M., Roschger, P., Cosman, F., Kurland, E.S., Tesch, W., Messmer, P., Dempster, D.W., Nieves, J., Shane, E., Fratzl, P., Klaushofer, K., Bilezikian, J., Lindsay, R.: Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J. Clin. Endocrinol. Metab. 88, 1150–1156 (2003)
  • 作者单位:1. Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany2. Institute for Biomechanics, ETH Zurich, Zurich, Switzerland3. Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Dept., Hanusch Hospital, 1140 Vienna, Austria
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Statistical Physics
    Mathematical and Computational Physics
    Physical Chemistry
    Quantum Physics
  • 出版者:Springer Netherlands
  • ISSN:1572-9613
文摘
On a sub-millimeter length scale, bone is a very heterogeneous material with varying mineral content. This heterogeneity can be measured by quantitative backscattered electron imaging (qBEI) and quantified by a probability distribution called the bone mineralization density distribution (BMDD). The stochastic nature of the backscattering of electrons during the measurement makes the results dependent on the acquisition time. In this work the influence of the measurement conditions was quantified and was corrected for using Tikhonov regularization. Deconvolution reduces the width of the BMDD and allows a more precise definition of a reference BMDD for healthy adults. The corrected information was used as input for a mathematical model that predicts the time evolution of the BMDD. Simulations of osteoporosis treatment reveal a double peak in the BMDD that is not observed in experiments due to limited acquisition time. Our method allows determining the necessary acquisition time to resolve such double peaks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700