High fluoride and low calcium levels in drinking water is associated with low bone mass, reduced bone quality and fragility fractures in sheep
详细信息    查看全文
  • 作者:M. J. K. Simon (1)
    F. T. Beil (1) (2)
    W. Rüther (2)
    B. Busse (1)
    T. Koehne (1)
    M. Steiner (3)
    P. Pogoda (1)
    A. Ignatius (3)
    M. Amling (1)
    R. Oheim (1)
  • 关键词:Fluoride ; Fluorosis ; Fragility fracture ; Osteoporosis
  • 刊名:Osteoporosis International
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:25
  • 期:7
  • 页码:1891-1903
  • 全文大小:
  • 参考文献:1. Heikens A, Sumarti S, van Bergen M, Widianarko B, Fokkert L, van Leeuwen K, Seinen W (2005) The impact of the hyperacid Ijen Crater Lake: risks of excess fluoride to human health. Sci Total Environ 346:56-9 CrossRef
    2. Gbadebo AM (2012) Groundwater fluoride and dental fluorosis in southwestern Nigeria. Environ Geochem Health 34:597-04 CrossRef
    3. Gupta SK, Gambhir S, Mithal A, Das BK (1993) Skeletal scintigraphic findings in endemic skeletal fluorosis. Nucl Med Commun 14:384-90 CrossRef
    4. Kierdorf H, Kierdorf U, Richards A, Sedlacek F (2000) Disturbed enamel formation in wild boars (Sus scrofa L.) from fluoride polluted areas in Central Europe. Anat Rec 259:12-4 CrossRef
    5. Bernstein DS, Sadowsky N, Hegsted DM, Guri CD, Stare FJ (1966) Prevalence of osteoporosis in high- and low-fluoride areas in North Dakota. JAMA 198:499-04 CrossRef
    6. Palmer C, Wolfe SH (2005) Position of the American Dietetic Association: the impact of fluoride on health. J Am Diet Assoc 105:1620-628 CrossRef
    7. Kleerekoper M, Peterson EL, Nelson DA, Phillips E, Schork MA, Tilley BC, Parfitt AM (1991) A randomized trial of sodium fluoride as a treatment for postmenopausal osteoporosis. Osteoporos Int 1:155-61 CrossRef
    8. Riggs BL, Hodgson SF, O’Fallon WM, Chao EY, Wahner HW, Muhs JM, Cedel SL, Melton LJ 3rd (1990) Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 322:802-09 CrossRef
    9. Boivin G, Chavassieux P, Chapuy MC, Baud CA, Meunier PJ (1989) Skeletal fluorosis: histomorphometric analysis of bone changes and bone fluoride content in 29 patients. Bone 10:89-9 CrossRef
    10. Fratzl P, Roschger P, Eschberger J, Abendroth B, Klaushofer K (1994) Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle x-ray-scattering study. J Bone Miner Res 9:1541-549 CrossRef
    11. Gordon SL, Corbin SB (1992) Summary of workshop on drinking water fluoride influence on hip fracture on bone health. (National Institutes of Health, 10 April, 1991). Osteoporos Int 2:109-17 CrossRef
    12. Jacobsen SJ, Goldberg J, Miles TP, Brody JA, Stiers W, Rimm AA (1990) Regional variation in the incidence of hip fracture. US white women aged 65?years and older. JAMA 264:500-02 CrossRef
    13. Cooper C, Wickham CA, Barker DJ, Jacobsen SJ (1991) Water fluoridation and hip fracture. JAMA 266:513-14 CrossRef
    14. Beltran-Neira RJ, Beltran-Aguilar ED (2004) Taxonomy for competency-based dental curricula. J Dent Educ 68:978-84
    15. K Sebelius (2011) Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention of Dental Caries. In Services HaH (ed.) Federal Register, pp. 2383-388
    16. Busse B, Jobke B, Hahn M, Priemel M, Niecke M, Seitz S, Zustin J, Semler J, Amling M (2010) Effects of strontium ranelate administration on bisphosphonate-altered hydroxyapatite: matrix incorporation of strontium is accompanied by changes in mineralization and microstructure. Acta Biomater 6:4513-521 CrossRef
    17. Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Puschel K, Djuric M, Amling M, Busse B (2013) Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano
    18. Roschger P, Plenk H Jr, Klaushofer K, Eschberger J (1995) A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities. Scanning Microsc 9:75-6, discussion 86-8
    19. Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319-26 CrossRef
    20. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42:456-66 CrossRef
    21. Seitz S, Koehne T, Ries C, De Novo OA, Barvencik F, Busse B, Eulenburg C, Schinke T, Puschel K, Rueger JM, Amling M, Pogoda P (2013) Impaired bone mineralization accompanied by low vitamin D and secondary hyperparathyroidism in patients with femoral neck fracture. Osteoporos Int 24:641-49 CrossRef
    22. Koehne T, Marshall RP, Jeschke A, Kahl-Nieke B, Schinke T, Amling M (2013) Osteopetrosis, osteopetrorickets and hypophosphatemic rickets differentially affect dentin and enamel mineralization. Bone 53:25-3 CrossRef
    23. Beil FT, Oheim R, Barvencik F, Hissnauer TN, Pestka JM, Ignatius A, Rueger JM, Schinke T, Clarke IJ, Amling M, Pogoda P (2012) Low turnover osteoporosis in sheep induced by hypothalamic-pituitary disconnection. J Orthop Res 30:1254-262 CrossRef
    24. Mathey J, Horcajada-Molteni MN, Chanteranne B, Picherit C, Puel C, Lebecque P, Cubizoles C, Davicco MJ, Coxam V, Barlet JP (2002) Bone mass in obese diabetic Zucker rats: influence of treadmill running. Calcif Tissue Int 70:305-11 CrossRef
    25. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140:4982-987
    26. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595-10 CrossRef
    27. Regelsberger J, Milovanovic P, Schmidt T, Hahn M, Zimmermann EA, Tsokos M, Zustin J, Ritchie RO, Amling M, Busse B (2012) Changes to the cell, tissue and architecture levels in cranial suture synostosis reveal a problem of timing in bone development. Eur Cell Mater 24:441-58
    28. Kubek DJ, Gattone VH 2nd, Allen MR (2010) Methodological assessment of acid-etching for visualizing the osteocyte lacunar-canalicular networks using scanning electron microscopy. Microsc Res Tech 73:182-86
    29. Oheim R, Beil FT, Kohne T, Wehner T, Barvencik F, Ignatius A, Amling M, Clarke IJ, Pogoda P (2013) Sheep model for osteoporosis: sustainability and biomechanical relevance of low turnover osteoporosis induced by hypothalamic-pituitary disconnection. J Orthop Res 31:1067-074 CrossRef
    30. Buchancova J, Polacek H, Hudeckova H, Murajda L, Osina O, Valachova J (2008) Skeletal fluorosis from the point of view of an occupational exposure to fluorides in former Czechoslovakia. Interdiscip Toxicol 1:193-97 CrossRef
    31. Kierdorf U, Kierdorf H, Sedlacek F, Fejerskov O (1996) Structural changes in fluorosed dental enamel of red deer (Cervus elaphus L.) from a region with severe environmental pollution by fluorides. J Anat 188(Pt 1):183-95
    32. Kakumanu N, Rao SD (2013) Images in clinical medicine. Skeletal fluorosis due to excessive tea drinking. N Engl J Med 368:1140 CrossRef
    33. Cao JLJ, Tang LL, Sangbu DZ, Yu S, Zhou S, Yu Y, Qu HY (2005) Dental and early-stage skeletal fluorosis in children induced by fluoride in brick-tea. Fluoride 38:44-7
    34. Fejerskov OMF, Baelum V (1990) The nature and mechanisms of dental fluorosis in man. J Dent Res 69:692-00, discussion 721
    35. Wang W, Kong L, Zhao H, Dong R, Li J, Jia Z, Ji N, Deng S, Sun Z, Zhou J (2007) Thoracic ossification of ligamentum flavum caused by skeletal fluorosis. Eur Spine J 16:1119-128 CrossRef
    36. Medina-Solis CE, Pontigo-Loyola AP, Maupome G, Lamadrid-Figueroa H, Loyola-Rodriguez JP, Hernandez-Romano J, Villalobos-Rodelo JJ, de Lourdes M-CM (2008) Dental fluorosis prevalence and severity using Dean’s index based on six teeth and on 28 teeth. Clin Oral Investig 12:197-02 CrossRef
    37. Stevenson CA, Watson AR (1957) Fluoride osteosclerosis. Am J Roentgenol Radium Ther Nucl Med 78:13-8
    38. Schlesinger ER, Overton DE, Chase HC, Cantwell KT (1956) Newburgh-Kingston caries-fluorine study. XIII. Pediatric findings after ten years. J Am Dent Assoc 52:296-06
    39. Mc CH, Mc CF (1954) Effect of fluoride in drinking water on the osseous development of the hand and wrist in children. Public Health Rep 69:671-83 CrossRef
    40. Sowers MR, Wallace RB, Lemke JH (1986) The relationship of bone mass and fracture history to fluoride and calcium intake: a study of three communities. Am J Clin Nutr 44:889-98
    41. Kaminsky LS, Mahoney MC, Leach J, Melius J, Miller MJ (1990) Fluoride: benefits and risks of exposure. Crit Rev Oral Biol Med 1:261-81
    42. Schinke T, Schilling AF, Baranowsky A, Seitz S, Marshall RP, Linn T, Blaeker M, Huebner AK, Schulz A, Simon R, Gebauer M, Priemel M, Kornak U, Perkovic S, Barvencik F, Beil FT, Del Fattore A, Frattini A, Streichert T, Pueschel K, Villa A, Debatin KM, Rueger JM, Teti A, Zustin J, Sauter G, Amling M (2009) Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat Med 15:674-81 CrossRef
    43. Jacks G, Rajagoplan K, Alveteg T, Jonsson M (1993) Genesis of high-F groundwaters, southern India. Appl Geochem 8:241-44 CrossRef
    44. Zheng BS, Dingam ZH, Huang RG, Zhu JM, Yu XY, Wang AM, Zhou DX, Mao DJ, Su HC (1999) Issues of health and disease relating to coal use in southwestern China. Int J Coal Geol 40:119-32 CrossRef
    45. Grynpas MD, Holmyard D, Pritzker KP (1994) Bone mineralization and histomorphometry in biopsies of patients treated with fluoride. Cells Mater 4:287-97
    46. Baylink D, Wergedal J (1970) Effects of fluoride on bone formation, mineralization, and resorption in the rat. In: Vischer TL (ed) Fluoride in medicine. Hans Huber Publisher, Bern, pp 37-9
    47. Riggs BL (1983) Treatment of osteoporosis with sodium fluoride: an appraisal. In: Peck WA (ed) Bone and mineral research. Elsevier, Amsterdam, pp 366-93
    48. Dittmer KE, Thompson KG, Blair HT (2009) Pathology of inherited rickets in Corriedale sheep. J Comp Pathol 141:147-55 CrossRef
    49. Oheim R, Amling M, Ignatius A, Pogoda P (2012) Large animal model for osteoporosis in humans: the ewe. Eur Cell Mater 24:372-85
    50. Priemel M, von Domarus C, Klatte TO, Kessler S, Schlie J, Meier S, Proksch N, Pastor F, Netter C, Streichert T, Puschel K, Amling M (2010) Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 25:305-12 CrossRef
  • 作者单位:M. J. K. Simon (1)
    F. T. Beil (1) (2)
    W. Rüther (2)
    B. Busse (1)
    T. Koehne (1)
    M. Steiner (3)
    P. Pogoda (1)
    A. Ignatius (3)
    M. Amling (1)
    R. Oheim (1)

    1. Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
    2. Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
    3. Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, 89081, Ulm, Germany
  • ISSN:1433-2965
文摘
Summary Chronic environmental fluoride exposure under calcium stress causes fragility fractures due to osteoporosis and bone quality deterioration, at least in sheep. Proof of skeletal fluorosis, presenting without increased bone density, calls for a review of fracture incidence in areas with fluoridated groundwater, including an analysis of patients with low bone mass. Introduction Understanding the skeletal effects of environmental fluoride exposure especially under calcium stress remains an unmet need of critical importance. Therefore, we studied the skeletal phenotype of sheep chronically exposed to highly fluoridated water in the Kalahari Desert, where livestock is known to present with fragility fractures. Methods Dorper ewes from two flocks in Namibia were studied. Chemical analyses of water, blood and urine were executed for both cohorts. Skeletal phenotyping comprised micro-computer tomography (μCT), histological, histomorphometric, biomechanical, quantitative backscattered electron imaging (qBEI) and energy-dispersive X-ray (EDX) analysis. Analysis was performed in direct comparison with undecalcified human iliac crest bone biopsies of patients with fluoride-induced osteopathy. Results The fluoride content of water, blood and urine was significantly elevated in the Kalahari group compared to the control. Surprisingly, a significant decrease in both cortical and trabecular bones was found in sheep chronically exposed to fluoride. Furthermore, osteoid parameters and the degree and heterogeneity of mineralization were increased. The latter findings are reminiscent of those found in osteoporotic patients with treatment-induced fluorosis. Mechanical testing revealed a significant decrease in the bending strength, concurrent with the clinical observation of fragility fractures in sheep within an area of environmental fluoride exposure. Conclusions Our data suggest that fluoride exposure with concomitant calcium deficit (i) may aggravate bone loss via reductions in mineralized trabecular and cortical bone mass and (ii) can cause fragility fractures and (iii) that the prevalence of skeletal fluorosis especially due to groundwater exposure should be reviewed in many areas of the world as low bone mass alone does not exclude fluorosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700