Hyporheic zone flow disruption from channel linings: Implications for the hydrology and geochemistry of an urban stream, St. Louis, Missouri, USA
详细信息    查看全文
  • 作者:Elizabeth A. Hasenmueller ; Heather K. Robinson
  • 关键词:stream channel linings ; hyporheic zone ; groundwater ; surface water interactions ; flood hydrograph ; urban geochemistry ; urban streams
  • 刊名:Journal of Earth Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:27
  • 期:1
  • 页码:98-109
  • 全文大小:1,926 KB
  • 参考文献:Boulton, A. J., Findlay, S., Marmonier, P., et al., 1998. The Functional Significance of the Hyporheic Zone in Streams and Rivers. Annual Review of Ecology and Systematics, 29(1): 59–81. doi:10.1146/annurev.ecolsys.29.1.59CrossRef
    Buffington, J. M., Tonina, D., 2009. Hyporheic Exchange in Mountain Rivers II: Effects of Channel Morphology on Mechanics, Scales, and Rates of Exchange. Geography Compass, 3(3): 1038–1062. doi:10.1111/j.1749-8198.2009.00225.xCrossRef
    Bukaveckas, P. A., 2007. Effects of Channel Restoration on Water Velocity, Transient Storage, and Nutrient Uptake in a Channelized Stream. Environmental Science & Technology, 41(5): 1570–1576. doi:10.1021/es061618xCrossRef
    Criss, R. E., 1997. New Formulation for the Hydrograph, Time Constants for Stream Flow, and the Variable Character of Base Flow. Transactions American Geophysical Union, 78: 317
    Criss, R. E., 1999. Principles of Stable Isotope Distribution. Oxford University Press, Oxford. 254
    Criss, R. E., 2003. Hydrograph for Small Basins Following Intense Storms. Geophysical Research Letters, 30(6): 1314–1318. doi:10.1029/2002gl016808CrossRef
    Criss, R. E., Winston, W. E., 2008a. Discharge Predictions of a Rainfall-Driven Theoretical Hydrograph Compared to Common Models and Observed Data. Water Resources Research, 44(10): W10407. doi:10.1029/2007wr006415CrossRef
    Criss, R. E., Winston, W. E., 2008b. Properties of a Diffusive Hydrograph and the Interpretation of Its Single Parameter. Mathematical Geosciences, 40(3): 313–325. doi:10.1007/s11004-008-9145-9CrossRef
    Fetter, C. W., 2001. Applied Hydrogeology, 4th Ed. Prentice Hall, Upper Saddle River. 598
    Frederickson, G. C., Criss, R. E., 1999. Isotope Hydrology and Residence Times of the Unimpounded Meramec River Basin, Missouri. Chemical Geology, 157(3/4): 303–317. doi:10.1016/s0009-2541(99)00008-xCrossRef
    Freeze, R. A., Cherry, J. A., 1979. Groundwater. Prentice-Hall, Englewood Cliffs, NJ. 604
    Gooseff, M. N., LaNier, J., Haggerty, R., et al., 2005. Determining In-Channel (Dead Zone) Transient Storage by Comparing Solute Transport in a Bedrock Channel-Alluvial Channel Sequence, Oregon. Water Resources Research, 41(6): W06014. doi:10.1029/2004wr003513CrossRef
    Hach, 2005a. Method 8206, Chloride, Mercuric Nitrate, in Digital Titrator Model 16900 Manual. Hach Company, Loveland, CO, USA
    Hach, 2005b. Method 8038, Nitrogen, Ammonia: Nessler Method. Hach Company, Loveland, CO, USA
    Hach, 2005c. Method 10020, Nitrate: Chromotrophic Acid Method. Hach Company, Loveland, CO, USA
    Hach, 2005d. Method 8048, Phosphorus: Reactive (Orthophosphate) Method. Hach Company, Loveland, CO, USA
    Hach, 2005e. Method 8190, Phosphorus: Total Digestion. Hach Company, Loveland, CO, USA
    Hancock, P. J., 2002. Human Impacts on the Stream-Groundwater Exchange Zone. Environmental Management, 29(6): 763–781. doi:10.1007/s00267-001-0064-5CrossRef
    Haria, A. H., Shand, P., Soulsby, C., et al., 2012. Spatial Delineation of Groundwater-Surface Water Interactions through Intensive In-Stream Profiling. Hydrological Processes, 27(4): 628–634. doi:10.1002/hyp.9551CrossRef
    Harrison, R. W., 1997. Bedrock Geologic Map of the St. Louis 30'×60' Quadrangle, Missouri and Illinois. U.S. Geological Survey Miscellaneous Investigation Series Map I-2533, Scale 1: 100 000
    Hasenmueller, E. A., 2011. The Hydrology and Geochemistry of Urban and Rural Watersheds in East-Central Missouri: [Dissertation]. Washington University, St. Louis. 382
    Hasenmueller, E. A., Criss, R. E., 2013a. Multiple Sources of Boron in Urban Surface Waters and Groundwaters. Science of the Total Environment, 447: 235–247. doi:10.1016/j.scitotenv.2013.01.001CrossRef
    Hasenmueller, E. A., Criss, R. E., 2013b. Geochemical Techniques to Discover Open Cave Passage in Karst Spring Systems. Applied Geochemistry, 29: 126–134. doi:10.1016/j.apgeochem.2012.11.004CrossRef
    Hinkle, S. R., Duff, J. H., Triska, F. J., et al., 2001. Linking Hyporheic Flow and Nitrogen Cycling near the Willamette River—A Large River in Oregon, USA. Journal of Hydrology, 244(3/4): 157–180. doi:10.1016/s0022-1694(01)00335-3CrossRef
    Lau, J. K., Lauer, T. E., Weinman, M. L., 2006. Impacts of Channelization on Stream Habitats and Associated Fish Assemblages in East Central Indiana. The American Midland Naturalist, 156(2): 319–330. doi:10.1674/0003-0031(2006)156[319:iocosh]2.0.co;2CrossRef
    Lee, J. H., Bang, K. W., Ketchum, L. H., et al., 2002. First Flush Analysis of Urban Storm Runoff. Science of the Total Environment, 293(1–3): 163–175. doi:10.1016/s0048-9697(02)00006-2CrossRef
    Lutzen, E. E., Rockaway, J. D. Jr., 1989. Engineering Geologic Map of St. Louis County, Missouri. Missouri Department of Natural Resources, Open File Map 89-256-EG
    Metropolitan St. Louis Sewer District (MSD), 2015}. Metropolitan St. Louis Sewer District: Sewer Overflows [2015-12-11]. http://​www.​stlmsd.​com/​sites/​default/​files/​education/​448847.​PD
    National Oceanic and Atmospheric Administration (NOAA), 2015. National Weather Service (NWS) Weather: NWS [2015-12-11]. http://​www.​weather.​gov
    Rivett, M. O., Ellis, P. A., MacKay, R., 2011. Urban Groundwater Baseflow Influence upon Inorganic River-Water Quality: The River Tame Headwaters Catchment in the City of Birmingham, UK. Journal of Hydrology, 400(1/2): 206–222. doi:10.1016/j.jhydrol.2011.01.036CrossRef
    Ryan, R. J., Welty, C., Larson, P. C., 2010. Variation in Surface Water-Groundwater Exchange with Land Use in an Urban Stream. Journal of Hydrology, 392(1/2): 1–11. doi:10.1016/j.jhydrol.2010.06.004CrossRef
    Shock, E. L., Carbery, E., Noblit, N., et al., 2003. Water and Solute Sources in an Urban Stream, River des Peres, St. Louis, Missouri. In: Criss, R. E., Wilson, D. E., eds., At the Confluence: Rivers, Floods, and Water Quality in the St. Louis Region. Missouri Botanical Garden Press, St. Louis, Missouri. 150–160
    Sklash, M. G., Farvolden, R. N., 1979. The Role of Groundwater in Storm Runoff. Journal of Hydrology, 43(1–4): 45–65. doi:10.1016/0022-1694(79)90164-1CrossRef
    Stueber, A. M., Criss, R. E., 2005. Origin and Transport of Dissolved Chemicals in a Karst Watershed, Southwestern Illinois. Journal of the American Water Resources Association, 41(2): 267–290. doi:10.1111/j.1752-1688.2005.tb03734.xCrossRef
    U.S. Census, 2010. Population Density Date: 2010 U.S. Census [2014-12-15]. http://​2010.​census.​gov/​2010census
    U.S. Environmental Protection Agency (EPA), 1990. Method 200.7: Determinations of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry. U.S. Environmental Protection Agency, Revision 3.0
    U.S. Environmental Protection Agency (EPA), 1994. Method 200.8: Determinations of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry. U.S. Environmental Protection Agency, Revision 5.4
    U.S. Geological Survey (USGS), 2015a. USGS Land Cover Institute (LCI): U.S. Land Cover [2014-12-15]. http://​landcover.​usgs.​gov/​uslandcover.​php
    U.S. Geological Survey (USGS), 2015b. USGS Real-Time Data for Missouri: USGS Real-Time Data for Missouri [2014-12-15]. http://​waterdata.​usgs.​gov/​mo/​nwis/​rt
    Vaughn, D. M., 1990. Flood Dynamics of a Concrete-Lined, Urban Stream in Kansas City, Missouri. Earth Surface Processes and Landforms, 15(6): 525–537. doi:10.1002/esp.3290150605CrossRef
    Waddington, J. M., Roulet, N. T., Hill, A. R., 1993. Runoff Mechanisms in a Forested Groundwater Discharge Wetland. Journal of Hydrology, 147(1–4): 37–60. doi:10.1016/0022-1694(93)90074-jCrossRef
    White, D. S., 1993. Perspectives on Defining and Delineating Hyporheic Zones. Journal of the North American Benthological Society, 12(1): 61–69. doi:10.2307/1467686CrossRef
    Winston, W. E., Criss, R. E., 2004. Dynamic Hydrologic and Geochemical Response in a Perennial Karst Spring. Water Resources Research, 40(5): W05106. doi:10.1029/2004wr003054CrossRef
    Wondzell, S. M., Swanson, F. J., 1999. Floods, Channel Change, and the Hyporheic Zone. Water Resources Research, 35(2): 555–567. doi:10.1029/1998wr900047CrossRef
  • 作者单位:Elizabeth A. Hasenmueller (1)
    Heather K. Robinson (1)

    1. Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO, 63108, USA
  • 刊物主题:Earth Sciences, general; Geotechnical Engineering & Applied Earth Sciences; Biogeosciences; Geochemistry; Geology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1867-111X
文摘
Cement channel linings in an urban stream in St. Louis, Missouri increase event water contributions during flooding, shorten transport times, and magnify geochemical variability on both short and seasonal timescales due to disruption of hyporheic flowpaths. Detailed analyses of water isotopes, major and trace elements, and in situ water quality data for an individual flood event reveal that baseflow contributions rise by 8% only 320 m downstream of the point where this particular channel changes from cement-lined to unlined. However, additional hydrograph separations indicate baseflow contributions are variable and can be much higher (average baseflow increase is 16%). Stream electrical conductivity (EC) and solute concentrations in the lined reach were up to 25% lower during peak flow than in the unlined channel, indicating a greater event flow fraction. In contrast, during low flow, stream EC and solute concentrations in the lined reach were up to 30% higher due to the restricted inflow of more dilute groundwater. Over longer timescales, EC, solute concentrations, turbidity, and bacterial loads decrease downstream signifying increasing contributions of dilute baseflow. The decreased connectivity of surface waters and groundwaters along the hyporheic zone in lined channels increases the hydrologic and geochemical variability of urban streams. Key Words stream channel linings hyporheic zone groundwater-surface water interactions flood hydrograph urban geochemistry urban streams

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700