The variability of light-harvesting complexes in aerobic anoxygenic phototrophs
详细信息    查看全文
  • 作者:Vadim Selyanin ; Dzmitry Hauruseu ; Michal Koblížek
  • 关键词:Bacteriochlorophyll ; Purple non ; sulfur bacteria ; Photosynthetic unit size ; Bacterial photosynthesis ; Reaction center core complex
  • 刊名:Photosynthesis Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:128
  • 期:1
  • 页码:35-43
  • 全文大小:801 KB
  • 参考文献:Aagaard J, Sistrom WR (1972) Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol 15:209–225CrossRef PubMed
    Bahatyrova S, Frese R, van der Werf K, Otto C, Hunter N, Oslen J (2004) Flexibility and size heterogeneity of the LH1 light harvesting complex revealed by atomic force microscopy. J Biol Chem 279:21327–21333CrossRef PubMed
    Biebl H, Wagner-Döbler I (2006) Growth and bacteriochlorophyll a formation in taxonomically diverse aerobic anoxygenic phototrophic bacteria in chemostat culture: influence of light regiment and starvation. Proc Biochem 41:2153–2159CrossRef
    Boldareva EN, Akimov VN, Boychenko VA, Stadnichuk IN, Moskalenko AA, Makhneva ZK, Gorlenko VM (2008) Rhodobaca barguzinensis sp. nov., a new alkaliphilic purple nonsulfur bacterium isolated from a soda lake of the Barguzin Valley (Buryat Republic, Eastern Siberia). Microbiology 77:206–218CrossRef
    Clayton RK (1963) Toward the isolation of photochemical reaction center in Rhodopseudomonas spheroides. Biochim Biophys Acta 75:312–323CrossRef PubMed
    Cogdell R, Roszak AW (2014) The purple heart of photosynthesis. Nature 508:196–197CrossRef PubMed
    Cogdell R, Isaacs N, Hodward T, McLuskey K, Fraser N, Prince S (1999) How photosynthetic bacteria harvest solar energy. J Bacteriol 181:3869–3879PubMed PubMedCentral
    Cogdell RJ, Hashimoto H, Gardiner AT (2004) Purple bacterial light-harvesting complexes: from dreams to structures. Photosynth Res 80:173–179CrossRef PubMed
    Cohen-Bazire G, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49:25–68CrossRef
    Cottrell MT, Mannino A, Kirchman DL (2006) Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Appl Environ Microbiol 72:557–564CrossRef PubMed PubMedCentral
    Deisenhofer J, Michel H (1989) The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis (Nobel lecture). EMBO J 8:2149–2170PubMed PubMedCentral
    Drews G, Golecki J (1995) Structure, molecular organisation, and biosynthesis of membranes of purple bacteria. In: Madigan MT, Bauer CE, Blankenship RE (eds) Anoxygenic photosynthetic bacteria. Kluwer Acadamic Publishers, Dordrecht, pp 231–257
    Emerson R, Arnold W (1932) A separation of the reactions in photosynthesis be means of intermittent light. J Gen Physiol 15:391–420CrossRef PubMed PubMedCentral
    Fotiadis D, Qian P, Philippsen A, Bullough PA, Engel A, Hunter CN (2004) Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy. J Biol Chem 279:2063–2068CrossRef PubMed
    Francke C, Amesz J (1995) The size of the photosynthetic unit in purple bacteria. Photosynth Res 46:347–352CrossRef PubMed
    Fuchs BM, Spring S, Teeling H, Quast C, Wolf J, Schattenhofer M, Yan S, Ferriera S, Johnson J, Glöckner FO, Amann R (2007) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci USA 104:2891–2896CrossRef PubMed PubMedCentral
    Gall A (1995) Purification, characterization and crystallization of a range of Rhodospirillineae pigment-protein complexes. PhD thesis, University of Glasgow, Glasgow, the UK
    Gerencser L, Lanosi T, Laczko G, Maroti P (2000) Kinetic limitations in turnover of photosynthetic bacterial reaction center protein. Acta Biol Szegediensis 44:45–52
    Hauruseu D, Koblížek M (2012) The influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl Environ Microbiol 78:7414–7419CrossRef PubMed PubMedCentral
    Hu X, Damjanovic A, Ritz T, Shulten K (1998) Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc Natl Acad Sci USA 95:5935–5941CrossRef PubMed PubMedCentral
    Karrasch S, Bullough PA, Ghosh R (1995) The 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14:631–638PubMed PubMedCentral
    Kirchman DL, Hanson TE (2013) Bioenergetics of photoheterotrophic bacteria in the oceans. Environ Microbiol Rep 5:188–199CrossRef PubMed
    Koblížek M, Béjà O, Bidigare RR, Christensen S, Benetiz-Nelson B, Vetriani C, Kolber MK, Falkowski PG, Kolber ZS (2003) Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol 180:327–338CrossRef PubMed
    Koblížek M, Mlčoušková J, Kolber Z, Kopecký J (2010) On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch Microbiol 192:41–49CrossRef PubMed
    Koblížek M, Janouškovec J, Oborník M, Johnson JH, Ferriera S, Falkowski PG (2011) Genome sequence of the marine photoheterotrophic bacterium Erythrobacter sp. strain NAP1. J Bacteriol 193:5881–5882CrossRef PubMed PubMedCentral
    Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495CrossRef PubMed
    Liebetanz R, Hornberger U, Drews G (1991) Organization of the genes coding for the reaction-centre L and M subunits and B870 antenna polypeptides α and β from the aerobic photosynthetic bacterium Erythrobacter species OCH 114. Mol Microbiol 5(1459–1468):3
    Lien S, Gest H (1973) Regulation of chlorophyll synthesis in photosynthetic bacteria. Bioenergetics 4:423–434CrossRef
    Mašín M, Nedoma J, Pechar L, Koblížek M (2008) Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ Microbiol 10:1988–1996CrossRef PubMed
    Niedzwiedzki D, Fuciman M, Frank HA et al (2011) Energy transfer in an LH4-like light harvesting complex from the aerobic purple photosynthetic bacterium Roseobacter denitrificans. Biochim et Biophys Acta-Bioenergy 1807:518–528CrossRef
    Qian P, Papiz M, Jackson P, Brindley A, Ng I, Olsen J, Dickman M, Bullough P, Hunter C (2013) Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-PufX complex: dimerization and quinone channels promoted by PufX. Biochemistry 52:7575–7585CrossRef PubMed
    Schumacher A, Drews G (1979) Effects of light intensity on membrane differentiation in Rhodopseudomonas capsulata. Biochim Biophys Acta 547:417–428CrossRef PubMed
    Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov. and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14:140–145CrossRef
    Shimada K, Hayashi H, Tasumi M (1985) Bacteriochlorophyll-protein complexes of aerobic bacteria, Erythrobacter longus and Erythrobacter species OCh 114. Arch Microbiol 143:244–247CrossRef
    Shimada K, Yamazaki I, Tamai N, Mimuro M (1990) Excitation-energy flow in a photosynthetic bacterium lacking B850—fast energy-transfer from B806 to B870 in Erythrobacter sp strain OCh 114. Biochim Biophys Acta 1016:266–271CrossRef
    Sieracki ME, Gilg IC, Thier EC, Poulton NJ, Goericke R (2006) Distribution of planktonic aerobic anoxygenic photoheterotrophic bacteria in the northwest Atlantic. Limnol Oceanogr 51:38–46CrossRef
    Šlouf V, Fuciman M, Dulebo A, Kaftan D, Koblížek M, Frank H, Polívka T (2013) Carotenoid charge transfer states and their role in energy transfer processes in LH1-RC complexes from aerobic anoxygenic phototrophs. J Phys Chem 117:10987–10999
    Spring S, Lunsdorf H, Fuchs BM, Tindall BJ (2009) The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS ONE 1:e4866CrossRef
    Suyama T, Shigematsu T, Takaichi S, Nodasaka Y, Fujikawa S, Hosoya H, Tokia Y, Kanagawa T, Hanada S (1999) Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the Proteobacteria. Int J Syst Bacteriol 49:449–457CrossRef PubMed
    Takamiya K, Iba K, Okamura K (1987) Reaction center complex from an aerobic photosynthetic bacterium Erythrobacter species OCh 114. Biochim Biophys Acta 890:127–133CrossRef
    Van Heukelem L, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49CrossRef PubMed
    Walz T, Ghosh R (1997) Two-dimensional crystallization of the light-harvesting I reaction centre photounit from Rhodospirillum rubrum. J Mol Biol 265:107–111CrossRef PubMed
    Yurkov VV, Csotonyi JT (2009) New light on aerobic anoxygenic phototrophs. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28. Springer Verlag, Dordrecht, pp 31–55CrossRef
    Yurkov V, Lysenko AM, Gorlenko VM (1991) Hybridization analysis of the classification of bacteriochlorophyll a containing freshwater aerobic bacteria. Mikrobiologiya 60:518–523
    Yurkov V, Gad’on N, Angerhofer A, Drews G (1994) Light-harvesting complexes of aerobic bacteriochlorophyll-containing bacteria Roseococcus thiosulfatophilus, RB3 and Erytromicrobium ramosum, E5 and the transfer of excitation energy from carotenoids to bacteriochlorophyll Z. Naturforsch 49:579–586
  • 作者单位:Vadim Selyanin (1)
    Dzmitry Hauruseu (1)
    Michal Koblížek (1)

    1. Center Algatech, Institute of Microbiology CAS, 37981, Třeboň, Czech Republic
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5079
文摘
Light-harvesting capacity was investigated in six species of aerobic anoxygenic phototrophic (AAP) bacteria using absorption spectroscopy, fluorescence emission spectroscopy, and pigment analyses. Aerobically grown AAP cells contained approx. 140–1800 photosynthetic reaction centers per cell, an order of magnitude less than purple non-sulfur bacteria grown semiaerobically. Three of the studied AAP species did not contain outer light-harvesting complexes, and the size of their reaction center core complexes (RC–LH1 core complexes) varied between 29 and 36 bacteriochlorophyll molecules. In AAP species containing accessory antennae, the size was frequently reduced, providing between 5 and 60 additional bacteriochlorophyll molecules. In Roseobacter litoralis, it was found that cells grown at a higher light intensity contained more reaction centers per cell, while the size of the light-harvesting complexes was reduced. The presented results document that AAP species have both the reduced number and size of light-harvesting complexes which is consistent with the auxiliary role of phototrophy in this bacterial group.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700