The Genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853)
详细信息    查看全文
  • 作者:L. A. Balabanova ; V. A. Golotin ; S. N. Kovalchuk…
  • 关键词:marine bacterium ; genome sequence ; adaptation ; biocontrol ; biodegradation
  • 刊名:Russian Journal of Marine Biology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:42
  • 期:1
  • 页码:106-109
  • 全文大小:269 KB
  • 参考文献:1.Aziz, R.K., Bartels, D., Best, A.A., et al., The RAST server: rapid annotations using subsystems technology, BMC Genomics, 2008, vol. 9, p. 75, doi 10.1186/14712164-9-75CrossRef PubMed PubMedCentral
    2.Balabanova, L.A., Gafurov, Y.M., Pivkin, M.V., et al., An extracellular S1-type nuclease of marine fungus Penicillium melinii, Mar. Biotechnol., 2012, vol. 14, pp. 87–95.CrossRef PubMed
    3.Balabanova, L., Golotin, V., Kovalchuk, S., et al., A novel bifunctional hybrid with marine bacterium alkaline phosphatase and Far Eastern holothurian mannanbinding lectin activities, PloS One, 2014, vol. 9, p. e112729.
    4.Behera, B.C., Singdevsachan, S.K., Mishra, R.R., et al., Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove, Biocatal. Agric. Biotechnol., 2014, vol. 3, pp. 97–110.
    5.Belcheva, N.N., Zakhartsev, M.V., Dovzhenko, N.V., et al., Anthropogenic pollution stimulates oxidative stress in soft tissues of mussel Crenomytilus grayanus, Ocean Sci. J., 2011, vol. 46, pp. 85–94.CrossRef
    6.Golotin, V.A., Balabanova, L.A., Likhatskaya, G.N., and Rasskazov, V.A., Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina, Mar. Biotechnol., 2015, vol. 17, pp. 130–143.CrossRef PubMed
    7.Ibacache-Quiroga, C., Ojeda, J., Espinoza-Vergara, G., et al., The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking, Microb. Biotechnol., 2013, vol. 6, pp. 394–405.CrossRef PubMed PubMedCentral
    8.Ista, L.K., Callow, M.E., Finlay, J.A., et al., Effect of substratum surface chemistry and surface energy on attachment of marine bacteria and algal spores, Appl. Environ. Microbiol., 2004, vol. 70, pp. 4151–4157.CrossRef PubMed PubMedCentral
    9.Ivanova, E.P., Christen, R., Sawabe, T., et al., Presence of ecophysiologically diverse populations within Cobetia marina strains isolated from marine invertebrate, algae and the environments, Microbes Environ., 2005, vol. 20, pp. 200–207.CrossRef
    10.Kim, M.S., Roh, S.W., and Bae, J.W., Cobetia crustatorum sp. nov., a novel slightly halophilic bacterium isolated from traditional fermented seafood in Korea, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 620–626.CrossRef PubMed
    11.Lamport, D.T.A., Kieliszewski, M.J., Chen, Y., and Cannon M.C., Role of the extensin superfamily in primary cell wall architecture, Plant Physiol., 2011, vol. 156, pp. 11–19.CrossRef PubMed PubMedCentral
    12.Lang, Y., Ren, Y., Bai, L., and Zhang, L., Hydroxyectoine synthesis and release under osmotic shock in Cobetia marina CICC10367, Wei Sheng Wu Xue Bao, 2009, vol. 49, pp. 1590–1595.PubMed
    13.Masai, E., Katayama, Y., and Fukuda, M., Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds, Biosci. Biotechnol. Biochem., 2007, vol. 71, pp. 1–15.CrossRef PubMed
    14.Plisova, E.Y., Balabanova, L.A., Ivanova, E.P., et al., A highly active alkaline phosphatase from the marine bacterium Cobetia, Mar. Biotechnol., 2005, vol. 7, pp. 173–178.CrossRef
    15.Quillaguamán, J., Guzmán, H., Van-Thuoc, D., and Hatti-Kaul, R., Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects, Appl. Microbiol. Biotechnol., 2010, vol. 85, pp. 1687–1696.CrossRef PubMed
    16.Rao, D.N., Dryden, D.T.F., and Bheemanaik, S., Type III restriction-modification enzymes: a historical perspective, Nucleic Acids Res., 2013, doi 10.1093/nar/gkt616
    17.Sievert, S.M. and Vetriani, C., Chemoautotrophy at deep-sea vents: past, present, and future, Oceanography, 2012, vol. 25, pp. 218–233.
    18.Trentin, D.S., Gorziza, D.F., Abraham, W.R., et al., Antibiofilm activity of Cobetia marina filtrate upon Staphylococcus epidermidis catheter-related isolates, Braz. J. Microbiol., 2011, vol. 42, pp. 1329–1333.CrossRef PubMed PubMedCentral
    19.Vacheron, J., Desbrosses, G., Bouffaud, M.-L., et al., Plant growth-promoting rhizobacteria and root system functioning, Front. Plant Sci., 2013, vol. 4, p. 356.CrossRef PubMed PubMedCentral
    20.Wattam, A.R., Abraham, D., Dalay, O., et al., PATRIC, the bacterial bioinformatics database and analysis resource, Nucleic Acids Res., 2014, vol. 42, pp. D581–D591.
    21.Xu, M., Zhang, Q., Xia, C., et al., Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments, ISME J., 2014, vol. 8, pp. 1932–1944, doi 10.1038/ismej.2014.42CrossRef PubMed PubMedCentral
  • 作者单位:L. A. Balabanova (1) (2)
    V. A. Golotin (1) (2)
    S. N. Kovalchuk (3)
    A. V. Babii (3)
    L. S. Shevchenko (1)
    O. M. Son (2)
    G. Yu. Kosovsky (3)
    V. A. Rasskazov (1)

    1. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, pr. 100-let Vladivostoku 159, Vladivostok, 690022, Russia
    2. Far Eastern Federal University, ul. Sukhanova 8, Vladivostok, 690950, Russia
    3. Center of Experimental Embryology and Reproductive Biotechnologies, ul. Kostyakova 12/4, Moscow, 127422, Russia
  • 刊物主题:Freshwater & Marine Ecology;
  • 出版者:Springer US
  • ISSN:1608-3377
文摘
We determined the entire genome sequence of the marine bacterium Cobetia marina KMM 296 de novo, which was isolated from the mussel Crenomytilus grayanus that inhabits the Sea of Japan. The genome that provides the lifestyle of this marine bacterium provides alternative metabolic pathways that are characteristic of the inhabitants of the rhizospheres of terrestrial plants, as well as deep-sea ecological communities (symbiotic and free-living bacteria). The genome of C. marina KMM 296 contains genes that are involved in the metabolism and transport of nitrogen, sulfur, iron, and phosphorus. C. marina strain KMM 296 is a promising source of unique psychrophilic enzymes and essential secondary metabolites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700