A study on polymer blend electrolyte based on PVA/PVP with proton salt
详细信息    查看全文
  • 作者:N. Rajeswari (1)
    S. Selvasekarapandian (2)
    C. Sanjeeviraja (3)
    J. Kawamura (4)
    S. Asath Bahadur (5)
  • 关键词:PVA ; PVP ; Polymer blend ; X ; ray diffraction ; FTIR ; Laser Raman ; DSC ; Electrical properties ; Proton battery
  • 刊名:Polymer Bulletin
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:71
  • 期:5
  • 页码:1061-1080
  • 全文大小:703 KB
  • 参考文献:1. Maccullum JR, Vincent CA (eds) (1987) Polymer electrolyte reviews. Elsevier, London
    2. Bruce PG, Campbell SA, Lightfoot P, Mehta MA (1995) Polymer electrolytes: structure and electrode processes. Solid State Ion 78:191-98
    3. Blonsky PM, Clancy S, Hardy LC, Harris CS, Spindler R, Tonge JS, Shriver DF (1989) Polymeric Electrolytes. Chem Tech 758
    4. Subba Reddy ChV, Sharmanad AK, NarasimhaRao VVR (2004) Characterization of a solid state battery based on polyblend of (PVP?+?PVA?+?KBr O3) electrolyte. Ionics 10:142-47 CrossRef
    5. Varnell DF, Cole man MM (1981) FT I.R. Studies of polymer blends: V. Further observations on polyester-poly(vinyl chloride) blends. Polymer 22:1324-328 CrossRef
    6. Coleman MM, Zarin JJ (1797) Fourier-transform infrared studies of polymer blends. II. Poly(?-caprolactone)–poly(vinyl chloride) system. Polym Sci Polymer Phys Edn 17:837-50 CrossRef
    7. Garton A, Aubin M, Prudhomme RE (1983) FTIR of polycaprolactone/poly(vinylidene chloride-co-acrylonitrile) miscible blends. J Poly Sci Polym Lett Edn 21:45-7 CrossRef
    8. Varnell DF, Runt JP, Coleman MM (1983) FT I.R. and thermal analysis studies of blends of poly(ε-caprolactone) with homo- and copolymers of poly(vinylidene chloride). Polymer 24:37-2 CrossRef
    9. Woo EM, Barlow JW, Paul DR (1986) Phase behavior of blends of aliphatic polyesters with a vinylidene chloride/vinyl chloride copolymer. J Appl Polym Sci 32:3889-897 CrossRef
    10. Nishi T, Wang TT, Kwel TK (1975) Thermally induced phase separation behavior of compatible polymer mixtures. Macro Mol 8:227-34 CrossRef
    11. Chandra S, Hashmi SA, Prasad G (1990) Studies on ammonium perchlorate doped polyethylene oxide polymer electrolyte. Solid State Ionics 40:651-54 CrossRef
    12. Kumar M, Sekhon SS (2002) Ionic conductance behaviour of plasticized polymer electrolytes containing different plasticizers. Ionics 8:223-33 CrossRef
    13. Selvasekarapandian S, Hirankumar G, Kawamura J, Kuwata N, Hattori T (2005) 1H solid state NMR studies on the proton conducting polymer electrolytes. Mater Lett 59:2741-745 CrossRef
    14. Selvasekarapandian S, Hema M, Kawamura J, Kamishima O, Baskaran R (2010) Characterization of PVA–NH4NO3 polymer electrolyte and its application in rechargeable proton battery. J Phys Soc Jpn Suppl A 79:163-68 CrossRef
    15. Jonscher AK (1977) The universal dielectric response. Nature 267:673-79 CrossRef
    16. Vijaya N, Selvasekarapandian S, Hirankumar G, Karthikeyan S, Nithya H, Ramya CS (2012) Structural, vibrational, thermal, and conductivity studies on proton-conducting polymer electrolyte based on poly ( / N-vinylpyrrolidone). Ionics 18:91-9 CrossRef
    17. Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G (2007) Vibrational and impedance spectroscopic study on PVP–NH4SCN based polymer electrolytes. Physics B 393:11-7 CrossRef
    18. Mauritz KA (1989) Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers. 4. Long-range ion transport. Macromolecules 22:4483-488 CrossRef
    19. Kyritsis A, Pissis P, Grammatikakis J (1995) Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. J Polym Sci Part B Polym Phys 33:1737-750 CrossRef
    20. Armstrong RD, Dickinson T, Wills PM (1974) The A.C. impedance of powdered and sintered solid ionic conductors. J Electroanal Chem 53:389-05 CrossRef
    21. Schmidt-Rohr K, Kulik AS, Beckham HW, Ohlemacher A, Pawelzik U, Boffel C, Spiess HW (1994) Molecular nature of the beta relaxation in poly(methyl methacrylate) investigated by multidimensional NMR. Macromolecules 27:4733-745 CrossRef
    22. Dieterich W, Maass P (2002) Non-Debye relaxations in disordered ionic solids. Chem Phys 284:439-67 CrossRef
    23. Agrawal RC, Hashmi SA, Pandey GP (2007) Electrochemical cell performance studies on all-solid-state battery using nano-composite polymer electrolyte membrane. Ionics 13:295-98 CrossRef
    24. Subba Reddy ChV, Sharma AK, Narasimha Rao VVR (2003) Conductivity and discharge characteristics of polyblend (PVP?+?PVA?+?KIO3) electrolyte. J Power Sources 114:338-45 CrossRef
  • 作者单位:N. Rajeswari (1)
    S. Selvasekarapandian (2)
    C. Sanjeeviraja (3)
    J. Kawamura (4)
    S. Asath Bahadur (5)

    1. Department of Physics, PSR Engineering College (Affiliated to Anna University), Sivakasi, 626140, Tamilnadu, India
    2. Materials Research Centre, Coimbatore, 641045, Tamilnadu, India
    3. Department of Physics, Alagappa University, Karaikudi, 630 003, Tamilnadu, India
    4. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
    5. Department of Physics, Kalasalingam University, Krishnankoil, 626 126, Tamilnadu, India
  • ISSN:1436-2449
文摘
Proton-conducting polymer blend electrolytes based on PVA–PVP–NH4NO3 were prepared for different compositions by solution cast technique. The prepared films are investigated by different techniques. The XRD study reveals the amorphous nature of the polymer electrolyte. The FTIR and laser Raman studies confirm the complex formation between the polymer and salt. DSC measurements show decrease in T g with increasing salt concentration. The ionic conductivity of the prepared polymer electrolyte was found by ac impedance spectroscopy analysis. The maximum ionic conductivity was found to be 1.41?×?10??S?cm? at ambient temperature for the composition of 50PVA:50PVP:30?wt% NH4NO3 with low-activation energy 0.29?eV. The conductivity temperature plots are found to follow an Arrhenius nature. The dielectric behavior was analyzed using dielectric permittivity (ε*) and the relaxation frequency (τ) was calculated from the loss tangent spectra (tan δ). Using this maximum ionic conducting polymer blend electrolyte, the primary proton battery with configuration Zn?+?ZnSO4·7H2O/50PVA:50PVP:30?wt% NH4NO3/PbO2?+?V2O5 was fabricated and their discharge characteristics studied.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700