Comparable Effects of Alendronate and Strontium Ranelate on Femur in Ovariectomized Rats
详细信息    查看全文
  • 作者:BaiLing Chen ; YiQiang Li ; XiaoXi Yang ; DengHui Xie
  • 关键词:Alendronate ; Strontium ranelate ; Biomechanics ; Bone histomorphometry ; Ovariectomization
  • 刊名:Calcified Tissue International
  • 出版年:2013
  • 出版时间:November 2013
  • 年:2013
  • 卷:93
  • 期:5
  • 页码:481-486
  • 全文大小:248KB
  • 参考文献:1. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276-287 CrossRef
    2. Iacono MV (2007) Osteoporosis: a national public health priority. J Perianesth Nurs 22(3):175-82 CrossRef
    3. North American Menopause Society (2010) Management of osteoporosis in postmenopausal women: 2010 position statement of the North American Menopause Society. Menopause 17(1):25-4 CrossRef
    4. Christenson ES, Jiang X, Kagan R, Schnatz P (2012) Osteoporosis management in post-menopausal women. Minerva Ginecol 64(3):181-94
    5. Kimmel DB (2007) Mechanism of action, pharmacokinetic and pharmacodynamic profile, and clinical applications of nitrogen-containing bisphosphonates. J Dent Res 86(11):1022-033 CrossRef
    6. Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA; Alendronate Phase III Osteoporosis Treatment Study Group (2004) Ten years-experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med 350:1189-199 CrossRef
    7. Rosen CJ, Hochberg MC, Bonnick SL, McClung M, Miller P, Broy S, Kagan R, Chen E, Petruschke RA, Thompson DE, de Papp AE; Fosamax Actonel Comparison Trial Investigators (2005) Treatment with once-weekly alendronate 70?mg compared with once-weekly risedronate 35?mg in women with postmenopausal osteoporosis: a randomized double-blind study. J Bone Miner Res 20(1):141-51 CrossRef
    8. Donaldson MG, Palermo L, Ensrud KE, Hochberg MC, Schousboe JT, Cummings SR (2012) Effect of alendronate for reducing fracture by FRAX score and femoral neck bone mineral density: the fracture intervention trial. J Bone Miner Res 27(8):1804-810 CrossRef
    9. Hagino H, Nishizawa Y, Sone T, Morii H, Taketani Y, Nakamura T, Itabashi A, Mizunuma H, Ohashi Y, Shiraki M, Minamide T, Matsumoto T (2009) A double-blinded head-to-head trial of minodronate and alendronate in women with postmenopausal osteoporosis. Bone 44(6):1078-084 CrossRef
    10. Reginster JY (2002) Strontium ranelate in osteoporosis. Curr Pharm Des 8(21):1907-916 CrossRef
    11. Marie PJ (2005) Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int 16(Suppl 1):S7–S10 CrossRef
    12. Bonnelye E, Chabadel A, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42(1):129-38 CrossRef
    13. Ma YL, Zeng QQ, Porras LL, Harvey A, Moore TL, Shelbourn TL, Dalsky GP, Wronski TJ, Aguirre JI, Bryant HU, Sato M (2011) Teriparatide [rhPTH(1-4)], but not strontium ranelate, demonstrated bone anabolic efficacy in mature, osteopenic, ovariectomized rats. Endocrinology 152(5):1767-778 CrossRef
    14. Fuchs RK, Allen MR, Condon KW, Reinwald S, Miller LM, McClenathan D, Keck B, Phipps RJ, Burr DB (2008) Strontium ranelate does not stimulate bone formation in ovariectomized rats. Osteoporos Int 19(9):1331-341 CrossRef
    15. Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM (2007) The calcium-sensing receptor (CaR) is involved in strontium ranelate–induced osteoblast proliferation. Biochem Pharmacol 74(3):438-47 CrossRef
    16. Caverzasio J (2008) Strontium ranelate promotes osteoblast cell replication through at least two different mechanisms. Bone 42(6):1131-136 CrossRef
    17. Pi M, Quarles LD (2004) A novel cation-sensing mechanism in osteoblasts is a molecular target for strontium. J Bone Miner Res 19(5):862-69 CrossRef
    18. Atkins GJ, Welldon KJ, Halbout P, Findlay DM (2009) Strontium ranelate treatment of primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporos Int 20:653-64 CrossRef
    19. Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS (2009) Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol 157(7):1291-300 CrossRef
    20. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350(5):459-68 CrossRef
    21. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90(5):2816-822 CrossRef
    22. Kanis JA, Johansson H, Oden A, McCloskey EV (2011) A meta-analysis of the effect of strontium ranelate on the risk of vertebral and nonvertebral fracture in postmenopausal osteoporosis and the interaction with FRAX?. Osteoporos Int 22(8):2347-355 CrossRef
    23. Liu JM, Wai-Chee Kung A, Pheng CS, Zhu HM, Zhang ZL, Wu YY, Xu L, Meng XW, Huang ML, Chung LP, Hussain NH, Sufian SS, Chen JL (2009) Efficacy and safety of 2?g/day of strontium ranelate in Asian women with postmenopausal osteoporosis. Bone 45(3):460-65 CrossRef
    24. Rizzoli R, Laroche M, Krieg MA, Frieling I, Thomas T, Delmas P, Felsenberg D (2010) Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int 30(10):1341-348 CrossRef
    25. Rizzoli R, Chapurlat RD, Laroche JM, Krieg MA, Thomas T, Frieling I, Boutroy S, Laib A, Bock O, Felsenberg D (2012) Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis. Results of a 2-year study. Osteoporos Int 23(1):305-15 CrossRef
    26. Sun P, Cai DH, Li QN, Chen H, Deng WM, He L, Yang L (2010) Effects of alendronate and strontium ranelate on cancellous and cortical bone mass in glucocorticoid-treated adult rats. Calcif Tissue Int 86(6):495-01 CrossRef
    27. National Research Council, Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies, USA
    28. Chen BL, Li YQ, Xie DH, Yang XX (2012) Low-magnitude high-frequency loading via whole body vibration enhances bone implant osseointegration in ovariectomized rats. J Orthop Res 30(5):733-39 CrossRef
    29. Chen B, Li Y, Yang X, Xie D (2012) Femoral metaphysis bending test of rat: introduction and validation of a novel biomechanical testing protocol for osteoporosis. J Orthop Sci 17(1):70-6 CrossRef
    30. Sliwiński L, Janiec W, Pytlik M, Folwarczna J, Kaczmarczyk-Sedlak I, Pytlik W, Cegie?a U, Nowińska B (2004) Effect of administration of alendronate sodium and retinol on the mechanical properties of the femur in ovariectomized rats. Pol J Pharmacol 56(6):817-24
    31. Seedor JG, Quartuccio HA, Thompson DD (1991) The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. Bone Miner Res 6(4):339-46 CrossRef
    32. Wang Y, Huang P, Tang PF, Chan KM, Li G (2011) Alendronate (ALN) combined with osteoprotegerin (OPG) significantly improves mechanical properties of long bone than the single use of ALN or OPG in the ovariectomized rats. J Orthop Surg Res 6:34 CrossRef
    33. Ahmet-Camcioglu N, Okman-Kilic T, Durmus-Altun G, Ekuklu G, Kucuk M (2009) Effects of strontium ranelate, raloxifene and misoprostol on bone mineral density in ovariectomized rats. Eur J Obstet Gynecol Reprod Biol 147(2):192-94 CrossRef
    34. Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P (2009) Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int 20(8):1417-428 CrossRef
    35. Ulrich U, Miller P, Eyre D, Chesnut CR, Schlebusch H, Soules M (2003) Bone remodeling and bone mineral density during pregnancy. Arch Gynecol Obstet 268:309-16 CrossRef
    36. Chachra D, Lee JM, Kasra M, Grynpas MD (2000) Differential effects of ovariectomy on the mechanical properties of cortical and cancellous bone in rat femora and vertebrae. Biomed Sci Instrum 36:123-28
    37. Thongchote K, Charoenphandhu N, Krishnamra N (2008) High physiological prolactin induced by pituitary transplantation decreases BMD and BMC in the femoral metaphysis, but not in the diaphysis of adult female rats. J Physiol Sci 58:39-5 CrossRef
    38. Yaffe A, Kollerman R, Bahar H, Binderman I (2003) The influence of alendronate on bone formation and resorption in a rat ectopic bone development model. J Periodontol 74(1):44-0 CrossRef
    39. Nijenhuis T, van der Eerden BC, Hoenderop JG, Weinans H, van Leeuwen JP, Bindels RJ (2008) Bone resorption inhibitor alendronate normalizes the reduced bone thickness of TRPV5??/sup> mice. J Bone Miner Res 23(11):1815-824 CrossRef
    40. Licata AA (1997) Bisphosphonate therapy. Am J Med Sci 313(1):17-2 CrossRef
  • 作者单位:BaiLing Chen (1)
    YiQiang Li (2)
    XiaoXi Yang (1)
    DengHui Xie (3)

    1. Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
    2. Department of Orthopedics, GuangZhou Women and Children’s Medical Center, Guangzhou, China
    3. Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
  • ISSN:1432-0827
文摘
This study compared the effects of alendronate (ALN) and strontium ranelate (SR) on bone mineral density (BMD), bone histomorphometry, and biomechanics in ovariectomized (OVX) rats. We randomly assigned 48 3-month-old female Sprague–Dawley rats to four groups: sham, OVX, ALN, and SR. Rats in the OVX, ALN, and SR groups received bilateral OVX. Rats in the ALN and SR groups were orally administrated ALN (7?mg/kg/week) and SR (500?mg/kg/day). Rats in the sham and OVX groups were treated with saline. All treatments continued for 12?weeks. Femoral BMD examination, distal femoral bone histomorphometry analysis, and biomechanical tests at the femoral diaphysis and metaphysis were performed to evaluate the effects of treatments in OVX rats. Results showed that both ALN and SR significantly increased femoral BMD (total femur, diaphyseal BMD, and distal metaphyseal BMD), distal femoral bone histomorphometric parameters (BV/TV, Tb.N, and Tb.Th), and femoral biomechanical parameters (maximum load, failure load, stiffness) compared with the OVX group (P?<?0.05). No differences were found between ALN and SR in increasing femoral BMD, distal femoral bone histomorphometric parameters (BV/TV, Tb.N, and Tb.Th), and femoral diaphysis biomechanical parameters (maximum load, failure load, stiffness) (P?>?0.05). The SR group was inferior to the ALN group in femoral metaphysis biomechanical parameters (P?<?0.05). In conclusion, ALN (7?mg/kg/week) and SR (500?mg/kg/day) have similar effects by increasing BMD, distal femoral bone histomorphometric parameters, and femoral metaphysis biomechanical properties. Although ALN has greater effects than SR on distal femoral metaphysis biomechanical properties, in general, ALN and SR have comparable effects on the femur in OVX rats.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700