Temperature dependence of Young’s modulus of titanium dioxide (TIO2) nanotubes: Molecular mechanics modeling
详细信息    查看全文
  • 作者:S. I. Lukyanov ; A. V. Bandura ; R. A. Evarestov
  • 刊名:Physics of the Solid State
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:57
  • 期:12
  • 页码:2464-2472
  • 全文大小:592 KB
  • 参考文献:1.M. T. Byrne, J. E. McCarthy, M. Bent, R. Blake, Y. K. Gun’ko, E. Horvath, Z. Konya, A. Kukovecz, I. Kiricsi, and J. N. Coleman, J. Mater. Chem. 17, 2351 (2007).CrossRef
    2.P. J. F. Harris, Int. Mater. Rev. 49, 31 (2004).CrossRef ADS
    3.R. Tenne, Front. Phys. 9, 370 (2014).CrossRef
    4.S. Kaur, M. Gallei, and E. Ionescu, in Organic–Inorganic Hybrid Nanomaterials, Ed. by S. Kalia and Y. Haldorai (Springer-Verlag, Cham, Switzerland, 2015).
    5.A. W. Tan, B. Pingguan-Murphy, R. Ahmad, and S. A. Akbar, Ceram. Int. 38, 4421 (2012).CrossRef
    6.L. S. Santos, N. T. C. Oliveira, C. M. Lepienski, C. E. B. Marino, and N. K Kuromoto, Rev. Mater. 19, 33 (2014).
    7.A. W. Miles and S. Gheduzzi, Surgery 30, 86 (2012).
    8.T. Shokuhfar, G. K. Arumugam, P. A. Heiden, R. S. Yassar, and C. Friedrich, ACS Nano 3, 3098 (2009).CrossRef
    9.G. A. Crawford, N. Chawla, K. Das, S. Bose, and A. Bandyopadhyay, Acta Biomater. 3, 359 (2007).CrossRef
    10.G. A. Crawford, N. Chawla, and J. E. Houston, J. Mech. Behav. Biomed. Mater. 2, 580 (2009).CrossRef
    11.K. Fischer and S. G. Mayr, Adv. Mater. (Weinheim) 23, 3838 (2011).
    12.I. Kaplan-Ashiri, S. R. Cohen, K. Gartsman, R. Rosentsveig, G. Seifert, and R. Tenne, J. Mater. Res. 19, 454 (2004).CrossRef ADS
    13.A. V. Bandura, R. A. Evarestov, and S. I. Lukyanov, Phys. Chem. Chem. Phys. 16, 14781 (2014).CrossRef
    14.J. P. Lu, Phys. Rev. Lett. 79, 1297 (1997).CrossRef ADS
    15.J. P. Lu, Phys. Chem. Solids 58, 1649 (1997).CrossRef ADS
    16.Y. Jin and F. G. Yuan, Compos. Sci. Technol. 63, 1507 (2003).CrossRef
    17.P. M. Agrawal, B. S. Sudalayandi, L. M. Raff, and R. Komanduri, Comput. Mater. Sci. 38, 271 (2006).CrossRef
    18.L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1987; Butterworth–Heinemann, Oxford, 1995).
    19.T. Lorenz, D. Teich, J.-O. Joswig, and G. Seifert, J. Phys. Chem. C 116, 11714 (2012).CrossRef
    20.M. Griebel, J. Hamaekers, and F. Heber, Comput. Mater. Sci. 45, 1097 (2009).CrossRef
    21.E. W. Bucholz and S. B. Sinnott, J. Appl. Phys. 112, 123510 (2012).CrossRef ADS
    22.Y. Jin and F. G. Yuan, Compos. Sci. Technol. 63, 1507 (2003).CrossRef
    23.G. Dereli and C. Ozdogan, Phys. Rev. B: Condens. Matter 67, 35416 (2003).CrossRef ADS
    24.G. Gao, T. Cagin, and W. A. Goddard III, Nanotechnology 9, 184 (1998).CrossRef ADS
    25.A. Sears and R. C. Batra, Phys. Rev. B: Condens. Matter 69, 235 406 (2004).
    26.Y. J. Guo, PhD Dissertation (California Institute of Technology, Pasadena, California, United States, 1992).
    27.I. Kaplan-Ashiri, S. R. Cohen, K. Gartsman, R. Rosentsveig, G. Seifert, and R. Tenne, J. Mater. Res. 19, 454 (2004).CrossRef ADS
    28.I. Kaplan-Ashiri, S. R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H. D. Wagner, and R. Tenne, Proc. Natl. Acad. Sci. 103, 523 (2006).CrossRef ADS
    29.R. P. Stoffel, C. Wessel, M.-W. Lumey, and R. Dronskowski, Angew. Chem., Int. Ed. Engl. 49, 5242 (2010).CrossRef
    30.K. Lagarec and S. Desgreniers, Solid State Commun. 94, 519 (1995).CrossRef ADS
    31.J. Wang, L. Wang, L. Maa, J. Zhao, B. Wang, and G. Wang, Physica E (Amsterdam) 41, 838 (2009).CrossRef ADS
    32.R. A. Evarestov, A. V. Bandura, M. V. Losev, S. Piskunov, and Yu. F. Zhukovskii, Physica E (Amsterdam) 43, 266 (2010).CrossRef ADS
    33.R. A. Evarestov, Yu. F. Zhukovskii, A. V. Bandura, and S. Piskunov, J. Phys. Chem. C 114, 21061 (2010).CrossRef
    34.J. D. Gale, Z. Kristallogr. 220, 552 (2005).
    35.A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation (Academic, New York, 1971).
    36.A. Hallil, R. Tétot, F. Berthier, I. Braems, and J. Creuze, Phys. Rev. B: Condens. Matter 73, 165406 (2006).CrossRef ADS
    37.C. M. Freeman, J. M. Newsam, S. M. Levinea, and C. R. A. Catlow, J. Mater. Chem. 3, 531 (1993).CrossRef
    38.M. O. Zacate, R. W. Grimes, and K. Scrivener, J. Mater. Sci. 35, 3727 (2000).CrossRef ADS
    39.M. Mostoller and J. C. Wang, Phys. Rev. B: Condens. Matter 32, 6773 (1985).CrossRef ADS
    40.M. Matsui and M. Akaogi, Mol. Simul. 6, 239 (1991).CrossRef
    41.D.-W. Kim, N. Enomoto, Z. Nakagawa, and K. Kawamura, J. Am. Ceram. Soc. 79, 1095 (1996).CrossRef
    42.V. Swamy and J. D. Gale, Phys. Rev. B: Condens. Matter 62, 5406 (2000).CrossRef ADS
    43.X. J. Han, L. Bergqvist, P. H. Dederichs, H. Müller- Krumbhaar, J. K. Christie, S. Scandolo, and P. Tangney, Phys. Rev. B: Condens. Matter 81, 134108 (2010).CrossRef ADS
    44.S. M. Woodley, P. D. Battle, J. D. Gale, and C. R. A. Catlow, Phys. Chem. Chem. Phys. 1, 2535 (1999).CrossRef
    45.T. Liang, Y. K. Shin, Y.-T. Cheng, D. E. Yilmaz, K. G. Vishnu, O. Verners, C. Zou, S. R. Phillpot, S. B. Sinnott, and A. C. T. van Duin, Annu. Rev. Mater. Res. 43, 109 (2013).CrossRef ADS
    46.R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).CrossRef ADS
  • 作者单位:S. I. Lukyanov (1)
    A. V. Bandura (1)
    R. A. Evarestov (1)

    1. Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, St. Petersburg, 198504, Russia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Solid State Physics and Spectroscopy
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1090-6460
文摘
Temperature dependence of the Young’s modulus of cylindrical single-wall nanotubes with zigzag and armchair chiralities and consolidated-wall nanotubes has been studied by the molecular mechanics method with the use of the atom–atom potential. The nanotubes have been obtained by rolling up of crystal layers (111) of TiO2 with fluorite structure. Calculations have been performed for isothermal conditions on the basis of calculating the Helmholtz free energy of the system. The dependence of the Helmholtz free energy of nanotubes on the period has been calculated in the quasi-harmonic approximation as a result of calculation of phonon frequencies. It has been shown that the temperature dependence of the stiffness of nanotubes is determined by their chirality, and some nanotubes exibit anomalous behavior of both the Young’s modulus and the period of unit cell with variation in temperature. Original Russian Text ? S.I. Lukyanov, A.V. Bandura, R.A. Evarestov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 12, pp. 2391-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700