Identifying the role of microRNAs in spinal cord injury
详细信息    查看全文
  • 作者:Jun Dong (1)
    Meng Lu (1)
    Xijing He (1)
    Junkui Xu (2)
    Jie Qin (1)
    Zhijian Cheng (1)
    Baobao Liang (3)
    Dong Wang (1)
    Haopeng Li (1)
  • 关键词:Spinal cord injury ; MicroRNA ; Pathophysiology
  • 刊名:Neurological Sciences
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:35
  • 期:11
  • 页码:1663-1671
  • 全文大小:365 KB
  • 参考文献:1. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS (2001) Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 24:254-64 CrossRef
    2. Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26:S2–S12 CrossRef
    3. Harkema SJ (2001) Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. Neuroscientist 7:455-68 CrossRef
    4. Strickland ER, Hook MA, Balaraman S, Huie JR, Grau JW, Miranda RC (2011) MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 186:146-60. doi:10.1016/j.neuroscience.2011.03.063 CrossRef
    5. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823-26 CrossRef
    6. Johnson SM, Lin SY, Slack FJ (2003) The time of appearance of the / C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev Biol 259:364-79. doi:10.1016/s0012-1606(03)00202-1 CrossRef
    7. Megraw M, Baev V, Rusinov V, Jensen ST, Kalantidis K, Hatzigeorgiou AG (2006) MicroRNA promoter element discovery in Arabidopsis. RNA Publ RNA Soc 12:1612-619. doi:10.1261/rna.130506 CrossRef
    8. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102-14. doi:10.1038/nrg2290 CrossRef
    9. Krichevsky AM (2007) MicroRNA profiling: from dark matter to white matter, or identifying new players in neurobiology. Sci World J 7:155-66 CrossRef
    10. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:1862-879. doi:10.1371/journal.pbio.0020363 CrossRef
    11. Yunta M, Nieto-Diaz M, Esteban FJ, Caballero-Lopez M, Navarro-Ruiz R, Reigada D, Pita-Thomas DW, del Aguila A, Munoz-Galdeano T, Maza RM (2012) MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS ONE 7. doi:10.1371/journal.pone.0034534
    12. Fineberg SK, Kosik KS, Davidson BL (2009) MicroRNAs potentiate neural development. Neuron 64:303-09. doi:10.1016/j.neuron.2009.10.020 CrossRef
    13. Hebert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32:199-06. doi:10.1016/j.tins.2008.12.003 CrossRef
    14. Genda Y, Arai M, Ishikawa M, Tanaka S, Okabe T, Sakamoto A (2013) microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury: a TaqMan (R) low density array study. Int J Mol Med 31:129-37. doi:10.3892/ijmm.2012.1163
    15. Mahishi LH, Hart RP, Lynch DR, Ratan RR (2012) miR-886-3p levels are elevated in Friedreich ataxia. J Neurosci 32:9369-373. doi:10.1523/jneurosci.0059-12.2012 CrossRef
    16. Lee RC, Feinbaum RL, Ambros V (1993) The / C. elegans heterochronic gene lin-4 encodes small rnas with antisense compl
  • 作者单位:Jun Dong (1)
    Meng Lu (1)
    Xijing He (1)
    Junkui Xu (2)
    Jie Qin (1)
    Zhijian Cheng (1)
    Baobao Liang (3)
    Dong Wang (1)
    Haopeng Li (1)

    1. The Orthopedics Department, The Second Affiliated Hospital of Xi’an Jiaotong University, no. 157, West Five Road, Xi’an, 710004, China
    2. The Orthopedics Department, Honghui Hosptial of Xi’an Jiaotong University, no. 76, Nan Guo Road, Xi’an, 710054, China
    3. The Plastic Surgery Department, Second Affiliated Hospital of Xi’an Jiaotong University, no. 157, West Five Road, Xi’an, 710004, China
  • ISSN:1590-3478
文摘
Spinal cord injury (SCI) is medically and socioeconomically debilitating, and effective treatments are lacking. The elucidation of the pathophysiological mechanisms underlying SCI is essential for developing effective treatments for SCI. MicroRNAs (miRNAs) are small non-coding RNA molecules (18-4 nucleotides long) that regulate gene expression by interacting with specific target sequences. Recent studies suggest that miRNAs can act as post-transcriptional regulators to inhibit mRNA translation. Bioinformatic analyses indicate that the altered expression of miRNAs has an effect on critical processes of SCI physiopathology, including astrogliosis, oxidative stress, inflammation, apoptosis, and neuroplasticity. Therefore, the study of miRNAs may provide new insights into the molecular mechanisms of SCI. Current studies have also provided potential therapeutic clinical applications that involve targeting mRNAs to treat SCI. This review summarizes the biogenesis and function of miRNAs and the roles of miRNAs in SCI. We also discuss the potential therapeutic applications of miRNA-based interventions for SCI.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700