Novel Hybrid Ligands for Passivating PbS Colloidal Quantum Dots to Enhance the Performance of Solar Cells
详细信息    查看全文
  • 作者:Yuehua Yang ; Baofeng Zhao ; Yuping Gao ; Han Liu ; Yiyao Tian…
  • 关键词:PbS ; Colloidal quantum dot ; Solar cells ; Ligands
  • 刊名:Nano-Micro Letters
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:7
  • 期:4
  • 页码:325-331
  • 全文大小:1,771 KB
  • 参考文献:1.I.J. Kramer, L. Levina, R. Debnath, D. Zhitomirsky, E.H. Sargent, Solar cells using quantum funnels. Nano Lett. 11(9), 3701-706 (2011). doi:10.-021/?nl201682h CrossRef
    2.O.E. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100 % via meg in a quantum dot solar cell. Science 334(6062), 1530 (2011). doi:10.-126/?science.-209845 CrossRef
    3.I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747), 462 (2005). doi:10.-126/?science.-117908 CrossRef
    4.J. Tang, E.H. Sargent, Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress. Adv. Mater. 23(1), 12-9 (2011). doi:10.-002/?adma.-01001491 CrossRef
    5.M.G. Panthani, J.M. Kurley, R.W. Crisp, T.C. Dietz, T. Ezzyat, J.M. Luther, D.V. Talapin, High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces. Nano Lett. 14(2), 670-75 (2014). doi:10.-021/?nl403912w CrossRef
    6.J. Zhu, Y. Yang, Y. Gao, D. Qin, H. Wu, L. Hou, W. Huang, Enhancement of open-circuit voltage and the fill factor in CdTe nanocrystal solar cells by using interface materials. Nanotechnology 25(36), 365203 (2014). doi:10.-088/-957-4484/-5/-6/-65203 CrossRef
    7.Y. Tian, Y. Zhang, Y. Lin, K. Gao, Y. Zhang et al., Solution-processed efficient CdTe nanocrystal/CBD-CdS heterojunction solar cells with ZnO interlayer. J. Nanoparticle Res. 15, 2053 (2013). doi:10.-007/?s11051-013-2053-z CrossRef
    8.Z. Chen, H. Zhang, X. Du, X. Cheng, X. Chen, Y. Jiang, B. Yang, From planar-heterojunction to n-i structure: an efficient strategy to improve short-circuit current and power conversion efficiency of aqueous-solution-processed hybrid solar cells. Energy Environ. Sci. 6, 1597-603 (2013). doi:10.-039/?c3ee40481a CrossRef
    9.Z. Chen, H. Zhang, Q. Zeng, Y. Wang, D. Xu, L. Wang, H. Wang, B. Yang, In situ construction of nanoscale CdTe-CdS bulk heterojunctions for inorganic nanocrystal solar cells. Adv. Energy Mater. 4(10), 1400235 (2014). doi:10.-002/?aenm.-01400235 CrossRef
    10.Y.-G. Nir, S.-H. Michal, Z. Marina, K. Shifi, S. Asher, T. Nir, Molecular control of quantum-dot internal electric field and its application to CdSe-based solar cells. Nat. Mater. 10, 974-79 (2011). doi:10.-038/?nmat3133 CrossRef
    11.E.J.D. Klem, C.W. Gregory, G.B. Cunningham, S. Hall, D.S. Temple, J.S. Lewis, Planar PbS quantum dot/C60 heterojunction photovoltaic devices with 5.2 % power conversion efficiency. Appl. Phys. Lett. 100(17), 173109 (2012). doi:10.-063/-.-707377 CrossRef
    12.D.C.J. Neo, C. Cheng, S.D. Stranks, S.M. Fairclough, J.S. Kim et al., Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells. Chem. Mater. 26(13), 4004-013 (2014). doi:10.-021/?cm501595u CrossRef
    13.G.H. Kim, B. Walker, H.B. Kim, J.Y. Kim, E.H. Sargent, J. Park, J.Y. Kim, Inverted colloidal quantum dot solar cells. Adv. Mater. 26(20), 3321-327 (2014). doi:10.-002/?adma.-01305583 CrossRef
    14.B.A. Gonfa, H. Zhao, J. Li, J. Qiu, M. Saidani et al., Air-processed depleted bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Sol. Energy Mater. Sol. Cells 124, 67-4 (2014). doi:10.-016/?j.?solmat.-014.-1.-37 CrossRef
    15.W. Ma, S.L. Swisher, T. Ewers, J. Engel, V.E. Ferry, H.A. Atwater, A.P. Alivisatos, Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano 5(10), 8140-147 (2011). doi:10.-021/?nn202786g CrossRef
    16.M. Tabachnyk, B. Ehrler, S. Gelinas, M.L. Bohm, B.J. Walker et al., Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 13, 1033-038 (2014). doi:10.-038/?nmat4093 CrossRef
    17.J. Gao, J.M. Luther, O.E. Semonin, R.J. Ellingson, A.J. Nozik, M.C. Beard, Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. Nano Lett. 11(3), 1002-008 (2011). doi:10.-021/?nl103814g CrossRef
    18.B.D. Weil, S.T. Connor, Y. Cui, CuInS2 solar cells by air-stable ink rolling. JACS 132(13), 6642-643 (2010). doi:10.-021/?ja1020475 CrossRef
    19.M.A. Hines, G.D. Scholes, Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15(21), 1844-849 (2003). doi:10.-002/?adma.-00305395 CrossRef
    20.S.A. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138-42 (2005). doi:10.-038/?nmat1299 CrossRef
    21.J. Tang, X. Wang, L. Brzozowski, D.A.R. Barkhouse, R. Debnath, L. Levina, E.H. Sargent, Schottky quantum dot solar cells stable in air under solar illumination. Adv. Mater. 22(12), 1398-402 (2010). doi:10.-002/?adma.-00903240 CrossRef
  • 作者单位:Yuehua Yang (1)
    Baofeng Zhao (1)
    Yuping Gao (1)
    Han Liu (1)
    Yiyao Tian (1)
    Donghuan Qin (1)
    Hongbin Wu (1)
    Wenbo Huang (1)
    Lintao Hou (2)

    1. State Key Laboratory of Luminescent Materials & Devices, Institute of Polymer Optoelectronic Materials & Devices, South China University of Technology, Guangzhou, 510640, People’s Republic of China
    2. Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, 510632, People’s Republic of China
  • 刊物类别:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 刊物主题:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2150-5551
文摘
We developed novel hybrid ligands to passivate PbS colloidal quantum dots (CQDs), and two kinds of solar cells based on as-synthesized CQDs were fabricated to verify the passivation effects of the ligands. It was found that the ligands strongly affected the optical and electrical properties of CQDs, and the performances of solar cells were enhanced strongly. The optimized hybrid ligands, oleic amine/octyl-phosphine acid/CdCl2 improved power conversion efficiency (PCE) to much higher of 3.72 % for Schottky diode cell and 5.04 % for p–n junction cell. These results may be beneficial to design passivation strategy for low-cost and high-performance CQDs solar cells. Keywords PbS Colloidal quantum dot Solar cells Ligands

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700