Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean
详细信息    查看全文
  • 作者:Meilan Xu (5)
    Zeheng Xu (7)
    Baohui Liu (7)
    Fanjiang Kong (7)
    Yasutaka Tsubokura (6)
    Satoshi Watanabe (6)
    Zhengjun Xia (7)
    Kyuya Harada (6)
    Akira Kanazawa (5)
    Testuya Yamada (5)
    Jun Abe (5)
  • 关键词:Photoperiod ; Soybean ; Flowering ; Determinate habit ; Post ; flowering ; Genetic variation
  • 刊名:BMC Plant Biology
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:13
  • 期:1
  • 全文大小:418KB
  • 参考文献:1. Watanabe S, Harada K, Abe J: Genetic and molecular bases of photoperiod responses of flowering in soybean. / Breed Sci 2012, 61:531-43. CrossRef
    2. Buzzell RI: Inheritance of a soybean flowering response to fluorescent-daylength conditions. / Can J Genet Cytol 1971, 13:703-07.
    3. Buzzell RI, Voldeng HD: Inheritance of insensitivity to long day length. / Soybean Genet Newsl 1980, 7:26-9.
    4. Saindon G, Voldeng HD, Beversdorf WD, Buzzell RI: Genetic control of long daylength response in soybean. / Crop Sci 1989, 29:1436-439. CrossRef
    5. Cober ER, Tanner JW, Voldeng HD: Genetic control of photoperiod response in early-maturing near-isogenic soybean lines. / Crop Sci 1996, 36:601-05. CrossRef
    6. Abe J, Xu DH, Miyano A, Komatsu K, Kanazawa A, Shimamoto Y: Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. / Crop Sci 2003, 43:1300-304. CrossRef
    7. Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J: Genetic redundancy in soybean photoresponses associated with duplication of phytochrome A gene. / Genetics 2008, 180:996-007. CrossRef
    8. Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K: Map-based cloning of the gene associated with the soybean maturity locus E3 . / Genetics 2009, 182:1251-262. CrossRef
    9. Cober ER, Tanner JW, Voldeng HD: Soybean photoperiod-sensitivity loci respond differentially to light quality. / Crop Sci 1996, 36:606-10. CrossRef
    10. Franklin KA, Allen T, Whitelam GC: Phytochrome A is an irradiance-dependent red light sensor. / Plant J 2007, 50:108-17. CrossRef
    11. Franklin KA, Whitelam GC: Phytochrome A function in red light sensing. / Plant Signal Behav 2007, 2:383-85. CrossRef
    12. Casal JJ, Sanchez RA, Yanovsky MJ: The function of phytochrome A. / Plant Cell Environ 1997, 20:813-19. CrossRef
    13. Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü S, Wu H, Tabata S, Harada K: Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. / Proc Natl Acad Sci USA 2012, 109:E2155-4. CrossRef
    14. Kong F, Liu B, Xia Z, Sato S, Kim BM, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J: Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. / Plant Physiol 2010, 154:1220-231. CrossRef
    15. Liu B, Abe J: QTL Mapping for photoperiod-insensitivity of a Japanese soybean landrace Sakamotowase. / J Hered 2010, 101:251-56. CrossRef
    16. Han T, Wu C, Tong Z, Mentreddy RS, Tan K, Gai J: Postflowering photoperiod regulates vegetative growth and reproductive development of soybean. / Env Exp Bot 2006, 55:120-29. CrossRef
    17. Kantolic AG, Slafer GA: Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. / Ann Bot 2007, 99:925-33. CrossRef
    18. Jiang Y, Wu C, Zhang L, Hu P, Hou W, Han T: Long-day effects on the terminal inflorescence development of a photoperiod-sensitive soybean [ Glycine max (L.) Merr.] variety. / Plant Sci 2010, 180:504-0. CrossRef
    19. Bernard RL: Two genes for time of flowering in soybeans. / Crop Sci 1971, 11:242-44. CrossRef
    20. McBlain BA, Hesketh JD, Bernard RL: Genetic effect on reproductive phenology in soybean isolines differing in maturity genes. / Can J Plant Sci 1987, 67:105-16. CrossRef
    21. Saindon G, Beversdorf WD, Voldeng HD: Adjusting of the soybean phenology using the E4 loci. / Crop Sci 1989, 29:1361-365. CrossRef
    22. Lee SH, Bailey MA, Mian MAR, Shipe ER, Ashley DA, Parrot PW, Hussey RS, Boerma HR: Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. / Theor Appl Genet 1996, 92:516-23. CrossRef
    23. Watanabe S, Tajuddin T, Yamanaka N, Hayashi M, Harada K: Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. / Breed Sci 2004, 54:399-07. CrossRef
    24. Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY: QTL mapping of ten agronomic traits on the soybean ( Glycine max L. Merr.) genetic map and their association with EST markers. / Theor Appl Genet 2004, 108:1131-139. CrossRef
    25. Cheng L, Wang Y, Zhang C, Wu C, Xu J, Zhu H, Leng J, Bai Y, Guan R, Hou W, Zhang L, Han T: Genetic analysis and QTL detection of reproductive period and post-flowering photoperiod responses in soybean. / Theor Appl Genet 2011, 123:421-29. CrossRef
    26. Komatsu K, Hwang TY, Takahashi M, Sayama T, Funatsuki H, Oki N, Ishimoto M: Identification of QTL controlling post-flowering period in soybean. / Breed Sci 2012, 61:646-52. CrossRef
    27. Cober ER, Molnar SJ, Charette M, Voldeng HD: A new locus for early maturity in soybean. / Crop Sci 2010, 50:524-27. CrossRef
    28. Fehr WR, Caviness CE, Burmood DT, Pennington JS: Stage of development description for soybeans, Glycine max (L.) Merrill. / Crop Sci 1971, 11:929-31. CrossRef
    29. Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Harada K: A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. / Genetics 2011, 188:395-07. CrossRef
    30. Harada K, Watanabe S, Xia Z, Tsubokura Y, Yamanaka N, Anai T: Positional cloning of the responsible genes for maturity Loci E1 , E2 and E3 in soybean. In / Soybean―Genetics and Novel Techniques for Yield Enhancement. Edited by: Krezhova D. : InTech; 2011:51-6.
    31. Tsubokura Y, Matsumura H, Xu M, Nakashima H, Liu B, Anai T, Kong F, Yuan X, Kanamori H, Katayose Y, Takahash R, Harada K, Abe J: Genetic variation in soybean at the maturity locus E4 is involved in adaptation to long days at high latitudes. / Agronomy 2013, 3:117-34. CrossRef
    32. Bernard RL: Two genes affecting stem termination in soybean. / Crop Sci 1972, 12:235-39. CrossRef
    33. Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J: The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER 1 . / Plant Physiol 2010, 153:198-10. CrossRef
    34. Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, McClean PE, Qiu L, Ma J: Artificial selection for determinate growth habit in soybean. / Proc Natl Acad Sci USA 2010, 107:8563-568. CrossRef
    35. Hudson MF, Quail PH: Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequences and microarray data. / Plant Physiol 2003, 133:1605-616. CrossRef
    36. Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G: Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis . / Plant Cell 2005, 17:2255-270. CrossRef
    37. Sawa M, Nusinow DA, Kay SA, Imaizumi T: FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis . / Science 2007, 318:261-65. CrossRef
    38. Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM: The GIGANTEA -regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis . / Plant Cell 2007, 19:2736-748. CrossRef
    39. Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M: Repression of flowering by the miR172 target SMZ. / PLoS Biol 2009, 7:e1000148. CrossRef
    40. Sawa M, Kay SA: GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana . / Proc Natl Acad Sci USA 2011, 108:11698-1703. CrossRef
    41. Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH: Role of SVP in the control of flowering time by ambient temperature in Arabidopsis . / Genes Dev 2007, 21:397-02. CrossRef
    42. Castillejo C, Pelaz S: The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. / Curr Biol 2008, 18:1338-343. CrossRef
    43. Abe J: Genetic diversity and its use in soybean. In / Proceedings of the 14th NIAS International Workshop on Genetic Resources ‘Genetic Resources and Comparative Genomes of Legumes (Glycine and Vigna). Edited by: Tomooka N, Vaughan DA. Tsukuba: Kobe, Sato Printing Co., Ltd; 2011:91-7.
    44. Kanazawa A, Liu B, Kong F, Arase S, Abe J: Adaptive evolution involving gene duplication and insertion of a novel Ty1 / copia -like retrotransposon in soybean. / J Mol Evol 2009, 69:164-75. CrossRef
    45. Takahashi R, Abe J: Soybean maturity genes associated with seed coat pigmentation and cracking in response to low temperatures. / Crop Sci 1999, 39:1657-662. CrossRef
    46. Githiri SM, Yang D, Khan NA, Xu D, Komatsuda T, Takahashi R: QTL analysis of low temperature induced browning in soybean seed coats. / J Hered 2007, 98:360-66. CrossRef
    47. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T: FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. / Science 2005, 309:1052-056. CrossRef
    48. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D: Integration of spatial and temporal information during floral induction in Arabidopsis . / Science 2005, 309:1056-059. CrossRef
    49. Huang T, B?hlenius H, Eriksson S, Parcy F, Nilsson O: The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. / Science 2005, 309:1694-696. CrossRef
    50. Sablowski R: Flowering and determinacy in Arabidopsi s. / J Exp Bot 2007, 58:899-07. CrossRef
    51. Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF: Interactions among APETALA1 , LEAFY , and TERMINAL FLOWER1 specify meristem fate. / Plant Cell 1999, 11:1007-018.
    52. Ratcliffe OJ, Bradley DJ, Coen ES: Separation of shoot and floral identity in A rabidopsis . / Development 1999, 126:1109-120.
    53. Doyle JJ, Doyle JL: Isolation of plant DNA from fresh tissue. / Focus 1990, 12:13-5.
  • 作者单位:Meilan Xu (5)
    Zeheng Xu (7)
    Baohui Liu (7)
    Fanjiang Kong (7)
    Yasutaka Tsubokura (6)
    Satoshi Watanabe (6)
    Zhengjun Xia (7)
    Kyuya Harada (6)
    Akira Kanazawa (5)
    Testuya Yamada (5)
    Jun Abe (5)

    5. Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
    7. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150040, China
    6. National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
文摘
Background Absence of or low sensitivity to photoperiod is necessary for short-day crops, such as rice and soybean, to adapt to high latitudes. Photoperiod insensitivity in soybeans is controlled by two genetic systems and involves three important maturity genes: E1, a repressor for two soybean orthologs of Arabidopsis FLOWERING LOCUS T (GmFT2a and GmFT5a), and E3 and E4, which are phytochrome A genes. To elucidate the diverse mechanisms underlying photoperiod insensitivity in soybean, we assessed the genotypes of four maturity genes (E1 through E4) in early-flowering photoperiod-insensitive cultivars and their association with post-flowering responses. Results We found two novel dysfunctional alleles in accessions originally considered to have a dominant E3 allele according to known DNA markers. The E3 locus, together with E1 and E4, contained multiple dysfunctional alleles. We identified 15 multi-locus genotypes, which we subdivided into 6 genotypic groups by classifying their alleles by function. Of these, the e1-as/e3/E4 genotypic group required an additional novel gene (different from E1, E3, and E4) to condition photoperiod insensitivity. Despite their common pre-flowering photoperiod insensitivity, accessions with different multi-locus genotypes responded differently to the post-flowering photoperiod. Cultivars carrying E3 or E4 were sensitive to photoperiod for post-flowering characteristics, such as reproductive period and stem growth after flowering. The phytochrome A–regulated expression of the determinate growth habit gene Dt1, an ortholog of Arabidopsis TERMINAL FLOWER1, was involved in the persistence of the vegetative activity at the stem apical meristem of flower-induced plants under long-day conditions. Conclusions Diverse genetic mechanisms underlie photoperiod insensitivity in soybean. At least three multi-locus genotypes consisting of various allelic combinations at E1, E3, and E4 conferred pre-flowering photoperiod insensitivity to soybean cultivars but led to different responses to photoperiod during post-flowering vegetative and reproductive development. The phyA genes E3 and E4 are major controllers underlying not only pre-flowering but also post-flowering photoperiod responses. The current findings improve our understanding of genetic diversity in pre-flowering photoperiod insensitivity and mechanisms of post-flowering photoperiod responses in soybean.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700