RhB Adsorption Performance of Magnetic Adsorbent Fe3O4/RGO Composite and Its Regeneration through A Fenton-like Reaction
详细信息    查看全文
  • 作者:Yalin Qin ; Mingce Long ; Beihui Tan ; Baoxue Zhou
  • 关键词:Magnetic adsorbent ; Fe3O4 nanoparticles ; Reduced grapheme oxide ; Fenton ; likereaction ; Regeneration
  • 刊名:Nano-Micro Letters
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:6
  • 期:2
  • 页码:125-135
  • 全文大小:336KB
  • 参考文献:[1]R. Sanghi and P. Verma, “Decolorisation of aqueous dye solutions by low-cost adsorbents: a review- Color. Technol. 129(2), 85-08 (2013). http://?dx.?doi.?org /10.1111/cote.12019CrossRef
    [2]A. Dqbrowski, “Adsorption -from theory to practice- Adv. Colloid Interface Sci. 93(1-), 135-24 (2001). http://?dx.?doi.?org /10.1016/S0001-8686(00)00082-8CrossRef
    [3]J. C. Lazo-Cannata, A. Nieto-Márquez, A. Jacoby, A. L. Paredes-Doig, A. Romero, M. R. Sun-Kou and J. L. Valverde, “Adsorption of phenol and nitrophenols by carbon nanospheres: Effect of pH and ionic strength- Sep. Purif. Technol. 80(2), 217-24 (2011). http://?dx.?doi.?org /10.1016/j.seppur.2011.04.029CrossRef
    [4]R. Liu, W. Gong, H. Lan, T. Yang, H. Liu and J. Qu, “Simultaneous removal of arsenate and fluoride by iron and aluminum binary oxide: Competitive adsorption effects- Sep. Purif. Technol. 92, 100-05 (2012). http://?dx.?doi.?org /10.1016/j.seppur.2012.03.020CrossRef
    [5]X. Hu, B. Liu, Y. Deng, H. Chen, S. Luo, C. Sun, P. Yang and S. Yang, “Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution- Appl. Catal. B: Environ. 107(3-4), 274-83 (2011). http://?dx.?doi.?org /10.1016/j.apcatb.2011.07.025CrossRef
    [6]S. Tang, N. Lu, J. Li and Y. Wu, “Design and application of an up-scaled dielectric barrier discharge plasma reactor for regeneration of phenolsaturated granular activated carbon- Sep. Purif. Technol. 95, 73-9 (2012). http://?dx.?doi.?org /10.1016/j.seppur.2012.05.002CrossRef
    [7]V. K. K. Upadhyayula, S. Deng, M. C. Mitchell and G. B. Smith, “Application of carbon nanotube technology for removal of contaminants in drinking water: a review- Sci. Total Environ. 408(1), 1-3 (2009). http://?dx.?doi.?org /10.1016/j.scitotenv.2009.09.027CrossRef
    [8]Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications- Adv. Mater. 22(35), 3906-924 (2010). http://?dx.?doi.?org /10.1002/adma.201001068CrossRef
    [9]J. Kim, L. J. Cote and J. Huang, “Two dimensional soft material: new faces of graphene oxide- Acc. Chem. Res. 45(8), 1356-364 (2012). http://?dx.?doi.?org /10.1021/ar300047sCrossRef
    [10]S. Wang, H. Sun, H. M. Ang and M. O. Tadé, “Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials- Chem. Eng. J. 226, 336-47 (2013). http://?dx.?doi.?org /10.1016/j.cej.2013.04.070CrossRef
    [11]K. C. Kemp, H. Seema, M. Saleh, N. H. Le, K. Mahesh, V. Chandra and K. S. Kim, “Environmental applications using graphene composites: water remediation and gas adsorption- Nanoscale 5(8), 3149-1 (2013). http://?dx.?doi.?org /10.1039/c3nr33708aCrossRef
    [12]Y. Zhi, G. Rungang, H. Nantao, C. Jing, C. Yingwu, Z. Liying, W. Hao, K. Eric Siu-Wai and Z. Yafei, “The prospective 2D graphene nanosheets: preparation, functionalization and applications- Nano-Micro Lett. 4(1), 1- (2012). http://?dx.?doi.?org /10.3786/nml.v4i1.p1-9
    [13]J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull and J. Huang, “Graphene oxide sheets at interfaces- J. Am. Chem. Soc. 132(23), 8180-186 (2010). http://?dx.?doi.?org /10.1021/ja102777pCrossRef
    [14]Z. Liu, J. T. Robinson, X. Sun and H. Dai, “PEGylated nanographene oxide for delivery of water-Insoluble cancer drugs- J. Am. Chem. Soc. 130(33), 10876-0877 (2008). http://?dx.?doi.?org /10.1021/ja803688xCrossRef
    [15]G. Zhao, T. Wen, C. Chen and X. Wang, “Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas- RSC Adv. 2(25), 9286-303 (2012). http://?dx.?doi.?org /10.1039/c2ra20990jCrossRef
    [16]L. Wan, M. Long, D. Zhou, L. Zhang and W. Cai, “Preparation and characterization of freestanding hierarchical porous TiO2 monolith modified with graphene oxide- Nano-Micro Lett. 4(2), 90-7 (2012). http://?dx.?doi.?org /dx.doi.org/10.3786/nml.v4i2.p90-97
    [17]C. T. Yavuz, J. T. Mayo, W. W. Yu, A. Prakash, J. C. Falkner, S. Yean, L. Cong, H. J. Shipley, A. Kan, M. Tomson, D. Natelson and V. L. Colvin, “Low-field magnetic separation of monodisperse Fe3O4 nanocrystals- Science 314(5801), 964-67 (2006). http://?dx.?doi.?org /10.1126/science.1131475CrossRef
    [18]M. Tayyebeh, A. Abbas, Z. Mohammad Ali, A. Mazaher and K. Nadia, “Application of modified silica coated magnetite nanoparticles for removal of iodine from water samples- Nano-Micro Lett. 4(1), 57-3 (2012). http://?dx.?doi.?org /10.3786/nml.v4i1.p57-63
    [19]H. Sun, L. Cao and L. Lu, “Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants- Nano Res. 4(6), 550-62 (2011). http://?dx.?doi.?org /10.1007/s12274-011-0111-3CrossRef
    [20]Y. Huang and A. A. Keller, “Magnetic nanoparticle adsorbents for emerging organic contaminants- ACS Sustainable Chem. Eng. 1(1), 731-36 (2013). http://?dx.?doi.?org /10.1021/sc400047q
  • 作者单位:Yalin Qin (14)
    Mingce Long (14)
    Beihui Tan (14)
    Baoxue Zhou (14)

    14. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
  • 刊物类别:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 刊物主题:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2150-5551
文摘
Adsorption is one of the most effective technologies in the treatment of colored matter containing wastewater. Graphene related composites display potential to be an effective adsorbent. However, the adsorption mechanism and their regeneration approach are still demanding more efforts. An effective magnetically separable absorbent, Fe3O4 and reduced graphene oxide (RGO) composite has been prepared by an in situ coprecipitation and reduction method. According to the characterizations of TEM, XRD, XPS, Raman spectra and BET analyses, Fe3O4 nanoparticles in sizes of 10-0 nm are well dispersed over the RGO nanosheets, resulting in a highest specific area of 296.2 m2/g. The rhodamine B adsorption mechanism on the composites was investigated by the adsorption kinetics and isotherms. The isotherms are fitting better by Langmuir model, and the adsorption kinetic rates depend much on the chemical components of RGO. Compared to active carbon, the composite shows 3.7 times higher adsorption capacity and thirty times faster adsorption rates. Furthermore, with Fe3O4 nanoparticles as the in situ catalysts, the adsorption performance of composites can be restored by carrying out a Fenton-like reaction, which could be a promising regeneration way for the adsorbents in the organic pollutant removal of wastewater. Keywords Magnetic adsorbent Fe3O4 nanoparticles Reduced grapheme oxide Fenton-likereaction Regeneration

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700