Performance evaluation of latent heat energy storage in horizontal shell-and-finned tube for solar application
详细信息    查看全文
  • 作者:S. Paria ; S. Baradaran ; Ahmad Amiri…
  • 关键词:Melting and solidification processes ; Horizontal finned tube ; Phase ; change material (PCM) ; Heat exchanger
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:123
  • 期:2
  • 页码:1371-1381
  • 全文大小:4,643 KB
  • 参考文献:1.Jeon J, Lee J-H, Seo J, Jeong S-G, Kim S. Erratum to: application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2014;116(1):539. doi:10.​1007/​s10973-012-2408-1 .CrossRef
    2.Harikrishnan S, Deepak K, Kalaiselvam S. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. J Therm Anal Calorim. 2014;115(2):1563–71. doi:10.​1007/​s10973-013-3472-x .CrossRef
    3.Anghel EM, Georgiev A, Petrescu S, Popov R, Constantinescu M. Thermo-physical characterization of some paraffins used as phase change materials for thermal energy storage. J Therm Anal Calorim. 2014;117(2):557–66. doi:10.​1007/​s10973-014-3775-6 .CrossRef
    4.Nemykin VN, Makarova EA, Grosland JO, Hadt RG, Koposov AY. Preparation, characterization, molecular and electronic structures, TDDFT, and TDDFT/PCM study of the solvatochromism in cyanovinylferrocenes. Inorg Chem. 2007;46(23):9591–601.CrossRef
    5.Sato H, Sakaki S. Comparison of electronic structure theories for solvated molecules: RISM-SCF versus PCM. J Phys Chem A. 2004;108(9):1629–34.CrossRef
    6.Çakmak G, Yıldız C. The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector. Food Bioprod Process. 2011;89(2):103–8.CrossRef
    7.Al-Abidi AA, Mat S, Sopian K, Sulaiman M, Mohammad AT. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. Int J Heat Mass Transf. 2013;61:684–95.CrossRef
    8.Maruoka N, Akiyama T. Thermal stress analysis of PCM encapsulation for heat recovery of high temperature waste heat. J Chem Eng Jpn. 2003;36(7):794–8.CrossRef
    9.Maruoka N, Sato K, Yagi J-i, Akiyama T. Development of PCM for recovering high temperature waste heat and utilization for producing hydrogen by reforming reaction of methane. ISIJ Int. 2002;42(2):215–9.CrossRef
    10.Stritih U, Butala V. Experimental investigation of energy saving in buildings with PCM cold storage. Int J Refrig. 2010;33(8):1676–83.CrossRef
    11.Mettawee E-BS, Assassa GM. Experimental study of a compact PCM solar collector. Energy. 2006;31(14):2958–68.CrossRef
    12.Wang Y, Tang B, Zhang S. Light–thermal conversion organic shape-stabilized phase-change materials with broadband harvesting for visible light of solar radiation. RSC Adv. 2012;2(30):11372–8.CrossRef
    13.Tyagi VV, Pandey AK, Kaushik SC, Tyagi SK. Thermal performance evaluation of a solar air heater with and without thermal energy storage. J Therm Anal Calorim. 2012;107(3):1345–52. doi:10.​1007/​s10973-011-1617-3 .CrossRef
    14.Sharma S, Iwata T, Kitano H, Sagara K. Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit. Sol Energy. 2005;78(3):416–26.CrossRef
    15.Roy I, Rana D, Sarkar G, Bhattacharyya A, Saha NR, Mondal S, et al. Physical and electrochemical characterization of reduced graphene oxide/silver nanocomposites synthesized by adopting a green approach. RSC Adv. 2015;5(32):25357–64.CrossRef
    16.Lafdi K, Mesalhy O, Elgafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications. Carbon. 2008;46(1):159–68.CrossRef
    17.Liang W, Chen P, Sun H, Zhu Z, Li A. Innovative spongy attapulgite loaded with n-carboxylic acids as composite phase change materials for thermal energy storage. RSC Adv. 2014;4(73):38535–41.CrossRef
    18.Mohamed MM. Solidification of phase change material on vertical cylindrical surface in holdup air bubbles. Int J Refrig. 2005;28(3):403–11.CrossRef
    19.Tang Q, Sun J, Yu S, Wang G. Improving thermal conductivity and decreasing supercooling of paraffin phase change materials by n-octadecylamine-functionalized multi-walled carbon nanotubes. RSC Adv. 2014;4(69):36584–90.CrossRef
    20.Sundarraj P, Maity D, Roy SS, Taylor RA. Recent advances in thermoelectric materials and solar thermoelectric generators—a critical review. RSC Adv. 2014;4(87):46860–74.CrossRef
    21.Wang N, Zhang XR, Zhu DS, Gao JW. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J Therm Anal Calorim. 2012;107(3):949–54. doi:10.​1007/​s10973-011-1467-z .CrossRef
    22.Mat S, Al-Abidi AA, Sopian K, Sulaiman M, Mohammad AT. Enhance heat transfer for PCM melting in triplex tube with internal–external fins. Energy Convers Manag. 2013;74:223–36.CrossRef
    23.Erek A, Ilken Z, Acar MA. Experimental and numerical investigation of thermal energy storage with a finned tube. Int J Energy Res. 2005;29(4):283–301.CrossRef
    24.Balikowski J, Mollendorf J. Performance of phase change materials in a horizontal annulus of a double-pipe heat exchanger in a water-circulating loop. J Heat Transf. 2007;129(3):265–72.CrossRef
    25.Stritih U. An experimental study of enhanced heat transfer in rectangular PCM thermal storage. Int J Heat Mass Transf. 2004;47(12):2841–7.CrossRef
    26.Blen K, Takgil F, Kaygusuz K. Thermal energy storage behavior of CaCl2·6H2O during melting and solidification. Energy Sources A. 2008;30(9):775–87.CrossRef
    27.Trp A, Lenic K, Frankovic B. Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit. Appl Therm Eng. 2006;26(16):1830–9.CrossRef
    28.Shmueli H, Ziskind G, Letan R. Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments. Int J Heat Mass Transf. 2010;53(19):4082–91.CrossRef
    29.Jesumathy SP, Udayakumar M, Suresh S. Heat transfer characteristics in latent heat storage system using paraffin wax. J Mech Sci Technol. 2012;26(3):959–65.CrossRef
    30.Zhang T, Tang Q, Lu H, Wang S, Sun L. Numerical study of melted PCM inside a horizontal annulus with threads in a three-dimensional model. RSC Adv. 2015;5(16):12178–85.CrossRef
    31.Bathelt A, Viskanta R, Leidenfrost W. An experimental investigation of natural convection in the melted region around a heated horizontal cylinder. J Fluid Mech. 1979;90(02):227–39.CrossRef
    32.Cao Y, Faghri A. Thermal protection from intense localized moving heat fluxes using phase-change materials. Int J Heat Mass Transf. 1990;33(1):127–38.CrossRef
    33.Cao Y, Faghri A. Performance characteristics of a thermal energy storage module: a transient PCM/forced convection conjugate analysis. Int J Heat Mass Transf. 1991;34(1):93–101.CrossRef
    34.Zhang Y, Faghri A. Semi-analytical solution of thermal energy storage system with conjugate laminar forced convection. Int J Heat Mass Transf. 1996;39(4):717–24.CrossRef
    35.Seeniraj R, Narasimhan NL. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol Energy. 2008;82(6):535–42.CrossRef
    36.Dutta R, Atta A, Dutta TK. Experimental and numerical study of heat transfer in horizontal concentric annulus containing phase change material. Can J Chem Eng. 2008;86(4):700–10.CrossRef
    37.Ezan MA, Ozdogan M, Erek A. Experimental study on charging and discharging periods of water in a latent heat storage unit. Int J Therm Sci. 2011;50(11):2205–19.CrossRef
    38.Ismail K, Lino F. Fins and turbulence promoters for heat transfer enhancement in latent heat storage systems. Exp Thermal Fluid Sci. 2011;35(6):1010–8.CrossRef
    39.Hosseini M, Ranjbar A, Sedighi K, Rahimi M. A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger. Int Commun Heat Mass Transf. 2012;39(9):1416–24.CrossRef
    40.Aydın O, Akgün M, Kaygusuz K. An experimental optimization study on a tube-in-shell latent heat storage. Int J Energy Res. 2007;31(3):274–87.CrossRef
    41.Aydın AA, Okutan H. High-chain fatty acid esters of myristyl alcohol with even carbon number: novel organic phase change materials for thermal energy storage–1. Sol Energy Mater Sol Cells. 2011;95(10):2752–62.CrossRef
  • 作者单位:S. Paria (1)
    S. Baradaran (1)
    Ahmad Amiri (1)
    A. A. D. Sarhan (1) (2)
    S. N. Kazi (1)

    1. Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
    2. Department of Mechanical Engineering, Faculty of Engineering, Assiut University, 71516, Assiut, Egypt
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Thermal energy storage plays a key role in improving the efficiency of solar applications. In this study, the energy storage behavior (melting or charging) and energy removal process (solidification or discharging) are investigated in the presence of paraffin wax as a phase-change material (PCM) in a horizontal shell-and-finned tube. The horizontal shell-and-finned tube comprises 24 and 48 radial fins for investigation in the laminar regime. The effect of external fin surface area on the heat transfer between the PCM and heat transfer fluid (HTF), distilled water, was studied. To realize this issue, the PCM charging and discharging times at different Reynolds number of HTF were investigated in the presence of both series of fins (24 and 48 fins). Along with a significant improvement in heat transfer with higher number of fin, the results concluded that a change in the HTF flow rate presents more influence on the PCM charging process as compared with discharging process. Also, the charging time was reduced 58 and 76 % by increasing HTF flow rate and fins density, respectively. Keywords Melting and solidification processes Horizontal finned tube Phase-change material (PCM) Heat exchanger

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700