Assessing the vulnerability of wheat germplasm from Bangladesh and Nepal to Ug99 stem rust
详细信息    查看全文
  • 作者:Z. A. Pretorius ; R. Prins ; P. K. Malaker ; N. C. D. Barma ; M. A. Hakim…
  • 关键词:Puccinia graminis ; Triticum aestivum ; Ug99
  • 刊名:Phytoparasitica
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:43
  • 期:5
  • 页码:637-645
  • 全文大小:365 KB
  • 参考文献:Barma, N.C.D., Malaker, P.K., Pandit, D.B., Sarker, Z.I., Hakim, M.A., Rahman, M.M., et al. (2013). Rust resistant wheat varieties released in Bangladesh. BGRI 2013 Technical Workshop, 19-22 August, 2013, New Delhi, India.
    Bhatta, M.R. (2012). Wheat variety improvement in Nepal. Hamro Sampada National Monthly.
    Doyle, J., & Doyle, J. (1990). A rapid total DNA preparation procedure for fresh plant tissue. Focus, 12, 13鈥?5.
    Ejaz, M., Iqbal, M., Shahzad, A., Rehman, A., Ahmad, I., & Ali, G. M. (2012). Genetic variation for markers linked to stem rust resistance genes in Pakistani wheat varieties. Crop Science, 52, 2638鈥?648.
    Jin, Y., Szabo, L., Pretorius, Z. A., Singh, R. P., & Fetch, T. (2008). Detection of virulence to Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Disease, 92, 923鈥?26.CrossRef
    Jin, Y., Szabo, L. J., Rouse, M. N., Fetch, T., Pretorius, Z. A., Wanyera, R., & Njau, P. (2009). Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Disease, 93, 367鈥?70.CrossRef
    Joshi, A. K., Azab, M., Mosaad, M., Moselhy, M., Osmanzai, M., Gelalcha, S., et al. (2011). Delivering rust resistant wheat to farmers: a step towards increased food security. Euphytica, 179, 187鈥?96.CrossRef
    Lagudah, E. S., Krattinger, S. G., Herrera-Foessel, S., Singh, R. P., Huerta-Espino, J., Spielmeyer, W., et al. (2009). Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical and Applied Genetics, 119, 889鈥?98.CrossRef PubMed
    Lagudah, E. S., McFadden, H., Singh, R. P., Huerta-Espino, J., Bariana, H. S., & Spielmeyer, W. (2006). Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics, 114, 21鈥?0.CrossRef PubMed
    Lan, C. X., Singh, R. P., Calvo-Salazar, V., Herrera-Foessel, S. A., & Huerta-Espino, J. (2014). Genetic analysis of resistance to leaf rust and stripe rust in wheat cultivar Francolin#1. Plant Disease, 98, 1227鈥?234.CrossRef
    Mago, R., Bariana, H. S., Dundas, I. S., Spielmeyer, W., Lawrence, G. J., Pryor, A. J., & Ellis, J. G. (2005). Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theoretical and Applied Genetics, 111, 496鈥?04.
    Mago, R., Simkova, H., Brown-Guedira, G., Dreisigacker, S., Breen, J., Jin, Y., et al. (2011a). An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theoretical and Applied Genetics, 122, 735鈥?44.CrossRef PubMed
    Mago, R., Spielmeyer, W., Lawrence, G. J., Lagudah, E. S., Ellis, J. G., & Pryor, A. (2002). Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theoretical and Applied Genetics, 104, 1317鈥?324.CrossRef PubMed
    Mago, R., Tabe, L., McIntosh, R. A., Pretorius, Z., Kota, R., Paux, E., et al. (2011b). A multiple resistance locus on chromosome arm 3BS in wheat confers resistance to stem rust (Sr2), leaf rust (Lr27), and powdery mildew. Theoretical and Applied Genetics, 123, 615鈥?23.CrossRef PubMed
    Malaker, P. K., & Reza, M. M. A. (2011). Resistance to rusts in Bangladeshi wheat (Triticum aestivum L.). Czech Journal of Genetics and Plant Breeding, 47(Special Issue), S155鈥揝159.
    Malaker, P.K., Barma, N.C.D., Reza, M.M.A., Hossain, M.S., Hakim, M.A., Mustarin, K., et al. (2013). Surveillance of wheat rusts in Bangladesh. BGRI 2013 Technical Workshop, 19-22 August, 2013, New Delhi, India.
    McIntosh, R. A., Wellings, C. R., & Park, R. F. (1995). Wheat rusts: an atlas of resistance genes. Dordrecht: CSIRO, Australia and Kluwer Academic Publishers.CrossRef
    Pretorius, Z. A., Bender, C. M., Visser, B., & Terefe, T. (2010). First report of a Puccinia graminis f. sp. tritici race virulent to the Sr24 and Sr31 wheat stem rust resistance genes in South Africa. Plant Disease, 94, 784鈥?85.CrossRef
    Pretorius, Z. A., Singh, R. P., Wagoire, W. W., & Payne, T. S. (2000). Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Disease, 84, 203.CrossRef
    Pretorius, Z. A., Szabo, L. J., Boshoff, W. H. P., Herselman, L., & Visser, B. (2012). First report of a new TTKSF race of wheat stem rust (Puccinia graminis f. sp. tritici) in South Africa and Zimbabwe. Plant Disease, 96, 590.CrossRef
    Sharma, R. K., Singh, P. K., Vinod, Joshi, A. K., Bhardwaj, S. C., Bains, N. S., & Singh, S. (2013). Protecting South Asian wheat production from stem rust (Ug99) epidemic. Journal of Phytopathology, 161, 299鈥?07.CrossRef
    Shiferaw, B., Smale, M., Braun, H.-J., Duveiller, E., Reynolds, M., & Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 5, 291鈥?17.CrossRef
    Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Bhavani, S., Njau, P., et al. (2011). The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annual Review of Phytopathology, 49, 465鈥?81.CrossRef PubMed
    Singh, R. P., Hodson, D. P., Jin, Y., Lagudah, E. S., Ayliffe, M. A., Bhavani, S., et al. (2015). Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology, 105, 872鈥?84.CrossRef PubMed
    Tsilo, T. J., Jin, Y., & Anderson, J. A. (2008). Diagnostic microsatellite markers for the detection of stem rust resistance gene Sr36 in diverse genetic backgrounds of wheat. Crop Science, 48, 253鈥?61.CrossRef
    Vurro, M., Bonciani, B., & Vannaci, G. (2010). Emerging infectious diseases of crop plants in developing countries: impact on agriculture and socio-economic consequences. Food Security, 2, 113鈥?32.CrossRef
  • 作者单位:Z. A. Pretorius (1)
    R. Prins (1) (2)
    P. K. Malaker (3)
    N. C. D. Barma (4)
    M. A. Hakim (3)
    D. Thapa (5)
    U. Bansal (6)
    G. L. Cisar (7)
    R. F. Park (6)

    1. Department of Plant Sciences, University of the Free State, Bloemfontein, 9300, South Africa
    2. CenGen (Pty) Ltd, 78 Fairbairn St., Worcester, 6850, South Africa
    3. Wheat Research Centre, BARI, Dinajpur, 5200, Bangladesh
    4. Regional Wheat Research Centre, BARI, Gazipur, 1701, Bangladesh
    5. Agriculture Botany Division, Nepal Agricultural Research Council, Khumaltar, Lalitpur, Nepal
    6. The University of Sydney Plant Breeding Institute Cobbitty, Private Bag 4011, Narellan, NSW, 2567, Australia
    7. International Programs, 252 Emerson Hall, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, 14853, USA
  • 刊物主题:Plant Pathology; Plant Sciences; Ecology; Agriculture; Life Sciences, general;
  • 出版者:Springer Netherlands
  • ISSN:1876-7184
文摘
Bread wheat (Triticum aestivum) is an important crop in South Asia and epidemics of stem rust, caused by Puccinia graminis f. sp. tritici, can impact negatively on food security. In a pro-active assessment of the risk posed by this disease, germplasm collections received from Bangladesh and Nepal in 2011 were screened for their response to Sr31-virulent stem rust races belonging to the Ug99 group. According to a molecular marker assay, 44% of Bangladesh lines and 48% of Nepal lines contained Sr31. In seedling tests, most entries were susceptible to P. graminis f. sp. tritici race PTKST, confirming the ineffectiveness of Sr31. No lines contained Sr24 or Sr36, two major genes that have been overcome by races within the Ug99 group. Despite seedling susceptibility, many lines exhibited high levels of adult plant resistance in the field. The presence of the Sr2 marker allele of csSr2 in some of these lines indicated that this gene is likely to play a role in the adult plant resistance observed. This study showed that sufficient protection to Ug99 exists in Bangladesh and Nepal wheat germplasm, and that the appropriate release of resistant cultivars will insure against a possible future incursion of this dangerous pathogen. Keywords Puccinia graminis Triticum aestivum Ug99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700