Functional consequences of age-related morphologic changes to pyramidal neurons of the rhesus monkey prefrontal cortex
详细信息    查看全文
  • 作者:Patrick J. Coskren (1) (2)
    Jennifer I. Luebke (2) (3)
    Doron Kabaso (1) (2) (5)
    Susan L. Wearne (1) (2)
    Aniruddha Yadav (1) (2) (6)
    Timothy Rumbell (1) (2)
    Patrick R. Hof (1) (2)
    Christina M. Weaver (2) (4)

    1. Fishberg Department of Neuroscience and Friedman Brain Institute
    ; Icahn School of Medicine at Mount Sinai ; New York ; NY ; 10029 ; USA
    2. Computational Neurobiology and Imaging Center
    ; Icahn School of Medicine at Mount Sinai ; New York ; NY ; 10029 ; USA
    3. Department of Anatomy and Neurobiology
    ; Boston University School of Medicine ; Boston ; MA ; 02118 ; USA
    5. BARN-ICT Ltd
    ; Binyamina ; Israel
    6. Gauge Data Solutions Pvt Ltd
    ; Noida ; India
    4. Department of Mathematics and Computer Science
    ; Franklin and Marshall College ; P.O. Box 3003 ; Lancaster ; PA ; 17604 ; USA
  • 关键词:Neuronal excitability ; Dendrites ; Spines ; Morphology ; Compartment model ; Aging ; Rhesus monkey ; Passive parameters
  • 刊名:Journal of Computational Neuroscience
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:38
  • 期:2
  • 页码:263-283
  • 全文大小:2,653 KB
  • 参考文献:1. Amatrudo, J, Weaver, CM, Crimins, JL, Hof, PR, Rosene, DL, Luebke, JI (2012) Influence of highly distinctive structural properties on the excitability of pyramidal neurons in monkey visual and prefrontal cortices. Journal of Neuroscience 32: pp. 13644-13660 523/JNEUROSCI.2581-12.2012" target="_blank" title="It opens in new window">CrossRef
    2. Antic, SD, Zhou, WL, Moore, AR, Short, SM, Ikonomu, KD (2010) The decade of the dendritic NMDA spike. Journal of Neuroscience Research 88: pp. 2991-3001 CrossRef
    3. Bai, L, Hof, PR, Standaert, DG, Xing, Y, Nelson, SE, Young, AB, Magnusson, KR (2004) Changes in the expression of the NR2B subunit during aging in macaque monkeys. Neurobiology of Aging 25: pp. 201-208 580(03)00091-5" target="_blank" title="It opens in new window">CrossRef
    4. Blalock, EM, Porter, NM, Landfield, PW (1999) Decreased G-protein-mediated regulation and shift in calcium channel types with age in hippocampal cultures. Journal of Neuroscience 19: pp. 8674-8684
    5. Branco, T, Hausser, M (2010) The single dendritic branch as a fundamental functional unit in the nervous system. Current Opinion in Neurobiology 20: pp. 494-502 CrossRef
    6. Brown, TH, Zador, A, Mainen, ZF, Claiborne, BJ Hebbian computations in hippocampal dendrites and spines. In: McKenna, T, Davis, J, Zornetzer, SF eds. (1992) Single Neuron Computation. Academic, San Diego, pp. 81-116 5-3.50010-4" target="_blank" title="It opens in new window">CrossRef
    7. Cannon, RC, Turner, DA, Pyapali, GK, Wheal, HV (1998) An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods 84: pp. 49-54 5-0270(98)00091-0" target="_blank" title="It opens in new window">CrossRef
    8. Carnevale, N. T. (2010). IClamp experiment with custom initialization. http://www.neuron.yale.edu/ftp/ted/neuron/iclamp_experiment_with_custom_init.zip. Accessed 30 Sep 2012.
    9. Carnevale, NT, Hines, ML (2006) The NEURON book. Cambridge University Press, Cambridge 511541612" target="_blank" title="It opens in new window">CrossRef
    10. Carnevale, NT, Tsai, KY, Claiborne, BJ, Brown, TH (1997) Comparative electrotonic analysis of three classes of rat hippocampal neurons. Journal of Neurophysiology 78: pp. 703-720
    11. Chang, YM, Luebke, JI (2007) Electrophysiological diversity of layer 5 pyramidal cells in the prefrontal cortex of the rhesus monkey: in vitro slice studies. Journal of Neurophysiology 98: pp. 2622-2632 52/jn.00585.2007" target="_blank" title="It opens in new window">CrossRef
    12. Chang, YM, Rosene, DL, Killiany, RJ, Mangiamele, LA, Luebke, JI (2005) Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys. Cerebral Cortex 15: pp. 409-418 CrossRef
    13. Constantinidis, C, Franowicz, MN, Goldman-Rakic, PS (2001) Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex. Journal of Neuroscience 21: pp. 3646-3655
    14. Dickstein, DL, Kabaso, D, Rocher, AB, Luebke, JI, Wearne, SL, Hof, PR (2007) Changes in the structural complexity of the aged brain. Aging Cell 6: pp. 275-284 CrossRef
    15. Dickstein, DL, Weaver, CM, Luebke, JI, Hof, PR (2013) Dendritic spine changes associated with normal aging. Neuroscience 22: pp. 21-32 CrossRef
    16. Duan, H, Wearne, SL, Rocher, AB, Macedo, A, Morrison, JH, Hof, PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cerebral Cortex 13: pp. 950-961 50" target="_blank" title="It opens in new window">CrossRef
    17. Dumitriu, D, Hao, J, Hara, Y, Kaufmann, J, Janssen, WG, Lou, W, Rapp, PR, Morrison, JH (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. Journal of Neuroscience 30: pp. 7507-7515 523/JNEUROSCI.6410-09.2010" target="_blank" title="It opens in new window">CrossRef
    18. Edwards, FA, Konnerth, A, Sakmann, B, Takahashi, T (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pfl眉gers Archiv 414: pp. 600-612 580998" target="_blank" title="It opens in new window">CrossRef
    19. Euler, T, Denk, W (2001) Dendritic processing. Current Opinion in Neurobiology 11: pp. 415-422 59-4388(00)00228-2" target="_blank" title="It opens in new window">CrossRef
    20. Faber, ESL, Sah, P (2003) Calcium-activated potassium channels: Multiple contributions to neuronal function. The Neuroscientist 9: pp. 181-194 58403009003011" target="_blank" title="It opens in new window">CrossRef
    21. Foster, TC (2007) Calcium homeostasis and modulation of synaptic plasticity in the aged brain. Aging Cell 6: pp. 319-325 CrossRef
    22. Fristoe, NM, Salthouse, TA, Woodard, JL (1997) Examination of age-related deficits on the Wisconsin Card Sorting Test. Neuropsychology 11: pp. 428-436 5.11.3.428" target="_blank" title="It opens in new window">CrossRef
    23. Frolkis, VV, Martynenko, OA, Timchenko, AN (1989) Age-related changes in the function of somatic membrane potassium channels of neurons in the mollusc Lymnaea stagnalis. Mechanisms of Ageing and Development 47: pp. 47-54 CrossRef
    24. Fu, Y, Yu, S, Ma, Y, Wang, Y, Zhou, Y (2013) Functional degradation of the primary visual cortex during early senescence in rhesus monkeys. Cerebral Cortex 23: pp. 2923-2931 CrossRef
    25. Funahashi, S, Bruce, CJ, Goldman-Rakic, PS (1989) Mnemonic coding of visual space in the primate dorsolateral prefrontal cortex. Journal of Neurophysiology 61: pp. 331-349
    26. Funahashi, S, Bruce, CJ, Goldman-Rakic, PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. Journal of Neurophysiology 63: pp. 814-831
    27. Gallagher, M, Rapp, PR (1997) The use of animal models to study the effects of aging on cognition. Annual Review of Psychology 48: pp. 339-370 CrossRef
    28. Geisser, S, Greenhouse, SW (1958) An extension of Box's result on the use of the F distribution in multivariate analysis. Annals of Mathematical Statistics 29: pp. 885-891 545" target="_blank" title="It opens in new window">CrossRef
    29. Girden, ER (1992) ANOVA: repeated measures. Sage Publications, Newbury Park
    30. Goldman-Rakic, PS (1995) Cellular basis of working memory. Neuron 14: pp. 477-485 5)90304-6" target="_blank" title="It opens in new window">CrossRef
    31. Hara, Y, Rapp, PR, Morrison, JH (2012) Neuronal and morphological bases of cognitive decline in aged rhesus monkeys. Age (Dordrecht, Netherlands) 34: pp. 1051-1073 57-011-9278-5" target="_blank" title="It opens in new window">CrossRef
    32. H盲usser, M, Mel, BW (2003) Dendrites: bug or feature?. Current Opinion in Neurobiology 13: pp. 372-383 59-4388(03)00075-8" target="_blank" title="It opens in new window">CrossRef
    33. Herndon, JG, Moss, MB, Rosene, D, Killiany, RJ (1997) Patterns of cognitive decline in aged rhesus monkeys. Behavioural Brain Research 87: pp. 25-35 56-5" target="_blank" title="It opens in new window">CrossRef
    34. Hines, ML, Morse, T, Migliore, M, Carnevale, NT, Shepherd, GM (2004) ModelDB: a database to support computational neuroscience. Journal of Computational Neuroscience 17: pp. 7-11 CrossRef
    35. Hodgkin, AL (1948) The local electric changes associated with repetitive action in a non-medullated axon. The Journal of Physiology 107: pp. 165-181 CrossRef
    36. Hof, PR, Morrison, JH (2004) The aging brain: morphomolecular senescence of cortical circuits. Trends in Neurosciences 27: pp. 607-613 CrossRef
    37. Hof, PR, Duan, H, Page, TL, Einstein, M, Wicinski, B, He, Y, Erwin, JM, Morrison, JH (2002) Age-related changes in GluR2 and NMDAR1 glutamate receptor subunit protein immunoreactivity in corticocortically projecting neurons in macaque and patas monkeys. Brain Research 928: pp. 175-186 5-5" target="_blank" title="It opens in new window">CrossRef
    38. Kabaso, D, Coskren, PJ, Henry, BI, Hof, PR, Wearne, SL (2009) The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging. Cerebral Cortex 19: pp. 2248-2268 CrossRef
    39. Krichmar, JL, Nasuto, SJ, Scorcioni, R, Washington, SD, Ascoli, GA (2002) Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Research 941: pp. 11-28 5" target="_blank" title="It opens in new window">CrossRef
    40. Leventhal, AG, Wang, Y, Pu, M, Zhou, Y, Ma, Y (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300: pp. 812-815 CrossRef
    41. London, M, H盲usser, M (2005) Dendritic computation. Annual Review of Neuroscience 28: pp. 503-532 5703" target="_blank" title="It opens in new window">CrossRef
    42. Losonczy, A, Makara, JK, Magee, JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452: pp. 436-441 5" target="_blank" title="It opens in new window">CrossRef
    43. Luebke, JI, Amatrudo, JM (2012) Age-related increase of sIAHP in prefrontal pyramidal cells of monkeys: relationship to cognition. Neurobiology of Aging 33: pp. 1085-1095 CrossRef
    44. Luebke, JI, Chang, YM, Moore, TL, Rosene, DL (2004) Normal aging results in decreased synaptic excitation and increased synaptic inhibition of layer 2/3 pyramidal cells in the monkey prefrontal cortex. Neuroscience 125: pp. 277-288 5" target="_blank" title="It opens in new window">CrossRef
    45. Luebke, JI, Barbas, H, Peters, A (2010) Effects of normal aging on prefrontal area 46 in the rhesus monkey. Brain Research Reviews 62: pp. 212-232 CrossRef
    46. Magee, JC (2000) Dendritic integration of excitatory synaptic input. Nature Reviews Neuroscience 1: pp. 181-190 5044552" target="_blank" title="It opens in new window">CrossRef
    47. Mainen, ZF, Sejnowski, TJ (1996) Influence of dendritic structure on firing patterns in model neocortical neurons. Nature 382: pp. 363-366 CrossRef
    48. Mainen, ZF, Joerges, J, Huguenard, JR, Sejnowski, TJ (1995) A model of spike initiation in neocortical pyramidal neurons. Neuron 15: pp. 1427-1439 5)90020-9" target="_blank" title="It opens in new window">CrossRef
    49. Marder, E, Goaillard, JM (2006) Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience 7: pp. 563-574 CrossRef
    50. Migliore, M, Shepherd, GM (2002) Emerging rules for the distributions of active dendritic conductances. Nature Reviews Neuroscience 3: pp. 362-370 CrossRef
    51. Moore, TL, Killiany, RJ, Herndon, JG, Rosene, DL, Moss, MB (2003) Impairment of abstraction and set shifting in aged rhesus monkeys. Neurobiology of Aging 24: pp. 125-134 580(02)00054-4" target="_blank" title="It opens in new window">CrossRef
    52. Morrison, JH, Baxter, MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nature Reviews Neuroscience 13: pp. 240-250
    53. Niesen, CE, Baskys, A, Carlen, PL (1988) Reversed ethanol effects on potassium conductances in aged hippocampal dentate granule neurons. Brain Research 445: pp. 137-141 CrossRef
    54. Norenberg, A, Hu, H, Vida, I, Bartos, M, Jonas, P (2010) Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proceedings of the National Academy of Sciences of the United States of America 107: pp. 894-899 CrossRef
    55. Oh, MM, Oliveira, FA, Waters, J, Disterhoft, JF (2013) Altered calcium metabolism in aging CA1 hippocampal pyramidal neurons. Journal of Neuroscience 33: pp. 7905-7911 523/JNEUROSCI.5457-12.2013" target="_blank" title="It opens in new window">CrossRef
    56. Page, TL, Einstein, M, Duan, H, He, Y, Flores, T, Rolshud, D, Erwin, JM, Wearne, SL, Morrison, JH, Hof, PR (2002) Morphological alterations in neurons forming corticocortical projections in the neocortex of aged patas monkeys. Neuroscience Letters 317: pp. 37-41 CrossRef
    57. Peters, A (2002) Structural changes that occur during normal aging of primate cerebral hemispheres. Neuroscience and Biobehavioral Reviews 26: pp. 733-741 CrossRef
    58. Porter, NM, Thibault, O, Thibault, V, Chen, KC, Landfield, PW (1997) Calcium channel density and hippocampal cell death with age in long-term culture. Journal of Neuroscience 17: pp. 5629-5639
    59. Rinzel, J, Ermentrout, B Analysis of neural excitability and oscillations. In: Koch, C, Segev, I eds. (1998) Methods in neuronal modeling. MIT Press, Cambridge, pp. 251-291
    60. Rodriguez, A, Ehlenberger, DB, Hof, PR, Wearne, SL (2006) Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images. Nature Protocols 1: pp. 2152-2161 CrossRef
    61. Rodriguez, A, Ehlenberger, DB, Dickstein, DL, Hof, PR, Wearne, SL (2008) Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3: pp. e1997 CrossRef
    62. Rodriguez, A, Ehlenberger, DB, Hof, PR, Wearne, SL (2009) Three-dimensional neuron tracing by voxel scooping. Journal of Neuroscience Methods 184: pp. 169-175 CrossRef
    63. Ross, WN (2012) Understanding calcium waves and sparks in central neurons. Nature Reviews Neuroscience 13: pp. 157-168
    64. Rumbell, T, Draguljic, D, Luebke, JI, Hof, PR, Weaver, CM (2014) Automatic fitness function selection for compartment model optimization. BMC Neuroscience 15: pp. O5 5-S1-O5" target="_blank" title="It opens in new window">CrossRef
    65. Schaefer, AT, Larkum, ME, Sakmann, B, Roth, A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. Journal of Neurophysiology 89: pp. 3143-3154 52/jn.00046.2003" target="_blank" title="It opens in new window">CrossRef
    66. Schmolesky, MT, Wang, Y, Creel, DJ, Leventhal, AG (2000) Abnormal retinotopic organization of the dorsal lateral geniculate nucleus of the tyrosinase-negative albino cat. The Journal of Comparative Neurology 427: pp. 209-219 CrossRef
    67. Schneider, CA, Rasband, WS, Eliceiri, KW (2012) NIH Image to ImageJ: 25聽years of image analysis. Nature Methods 9: pp. 671-675 CrossRef
    68. Skinner, F. K. (2013). Moving beyond Type I and Type II neuron types. F1000Res, 2, 19.
    69. Stratford, K, Mason, A, Larkman, A, Major, G, Jack, J The modeling of pyramidal neurons in the visual cortex. In: Durbin, R, Miall, C, Mitchison, G eds. (1989) The Computing Neuron. Addison-Wesley, London, pp. 296-321
    70. Stuart, G, Spruston, N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. Journal of Neuroscience 18: pp. 3501-3510
    71. Thibault, O, Landfield, PW (1996) Increase in single L-type calcium channels in hippocampal neurons during aging. Science 272: pp. 1017-1020 5264.1017" target="_blank" title="It opens in new window">CrossRef
    72. Thibault, O, Hadley, R, Landfield, PW (2001) Elevated postsynaptic [Ca2+]i and L-type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity. Journal of Neuroscience 21: pp. 9744-9756
    73. Thibault, O, Gant, JC, Landfield, PW (2007) Expansion of the calcium hypothesis of brain aging and Alzheimer's disease: minding the store. Aging Cell 6: pp. 307-317 5.x" target="_blank" title="It opens in new window">CrossRef
    74. Thurbon, D, Luscher, HR, Hofstetter, T, Redman, SJ (1998) Passive electrical properties of ventral horn neurons in rat spinal cord slices. Journal of Neurophysiology 80: pp. 2485-2502
    75. Traub, RD, Buhl, EH, Gloveli, T, Whittington, MA (2003) Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na鈥?鈥塩onductance or by blocking BK channels. Journal of Neurophysiology 89: pp. 909-921 52/jn.00573.2002" target="_blank" title="It opens in new window">CrossRef
    76. Trevelyan, AJ, Jack, J (2002) Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures. The Journal of Physiology 593: pp. 623-636 CrossRef
    77. Tsai, KY, Carnevale, NT, Claiborne, BJ, Brown, TH (1994) Efficient mapping from neuroanatomical to electrotonic space. Network 5: pp. 21-46 54-898X/5/1/002" target="_blank" title="It opens in new window">CrossRef
    78. Elburg, RA, Ooyen, A (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Computational Biology 6: pp. e1000781 CrossRef
    79. Vetter, P, Roth, A, Hausser, M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology 85: pp. 926-937
    80. Wang, M, Gamo, NJ, Yang, Y, Jin, LE, Wang, XJ, Laubach, M, Mazer, JA, Lee, D, Arnsten, AF (2011) Neuronal basis of age-related working memory decline. Nature 476: pp. 210-213 CrossRef
    81. Wearne, SL, Rodriguez, A, Ehlenberger, DB, Rocher, AB, Henderson, SC, Hof, PR (2005) New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience 136: pp. 661-680 5.05.053" target="_blank" title="It opens in new window">CrossRef
    82. Weaver, CM, Wearne, SL (2008) Neuronal firing sensitivity to morphologic and active membrane parameters. PLoS Computational Biology 4: pp. e11 CrossRef
    83. Wilson, IA, Ikonen, S, Gallagher, M, Eichenbaum, H, Tanila, H (2005) Age-associated alterations of hippocampal place cells are subregion specific. Journal of Neuroscience 25: pp. 6877-6886 523/JNEUROSCI.1744-05.2005" target="_blank" title="It opens in new window">CrossRef
    84. Zhang, J, Wang, X, Wang, Y, Fu, Y, Liang, Z, Ma, Y, Leventhal, AG (2008) Spatial and temporal sensitivity degradation of primary visual cortical cells in senescent rhesus monkeys. The European Journal of Neuroscience 28: pp. 201-207 568.2008.06300.x" target="_blank" title="It opens in new window">CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Neurology
    Human Genetics
    Theory of Computation
  • 出版者:Springer Netherlands
  • ISSN:1573-6873
文摘
Layer 3 (L3) pyramidal neurons in the lateral prefrontal cortex (LPFC) of rhesus monkeys exhibit dendritic regression, spine loss and increased action potential (AP) firing rates during normal aging. The relationship between these structural and functional alterations, if any, is unknown. To address this issue, morphological and electrophysiological properties of L3 LPFC pyramidal neurons from young and aged rhesus monkeys were characterized using in vitro whole-cell patch-clamp recordings and high-resolution digital reconstruction of neurons. Consistent with our previous studies, aged neurons exhibited significantly reduced dendritic arbor length and spine density, as well as increased input resistance and firing rates. Computational models using the digital reconstructions with Hodgkin-Huxley and AMPA channels allowed us to assess relationships between demonstrated age-related changes and to predict physiological changes that have not yet been tested empirically. For example, the models predict that in both backpropagating APs and excitatory postsynaptic currents (EPSCs), attenuation is lower in aged versus young neurons. Importantly, when identical densities of passive parameters and voltage- and calcium-gated conductances were used in young and aged model neurons, neither input resistance nor firing rates differed between the two age groups. Tuning passive parameters for each model predicted significantly higher membrane resistance (R m ) in aged versus young neurons. This R m increase alone did not account for increased firing rates in aged models, but coupling these R m values with subtle differences in morphology and membrane capacitance did. The predicted differences in passive parameters (or parameters with similar effects) are mathematically plausible, but must be tested empirically.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700