Microglia–blood vessel interactions: a double-edged sword in brain pathologies
详细信息    查看全文
  • 作者:Nevenka Dudvarski Stankovic ; Marcin Teodorczyk ; Robert Ploen…
  • 关键词:Blood vessels ; Blood–brain barrier ; Microglia ; Ischemic stroke ; Brain tumors ; Neurological pathologies
  • 刊名:Acta Neuropathologica
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:131
  • 期:3
  • 页码:347-363
  • 全文大小:2,001 KB
  • 参考文献:1.Adams RA, Bauer J, Flick MJ, Sikorski SL, Nuriel T, Lassmann H, Degen JL, Akassoglou K (2007) The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med 204:571–582. doi:10.​1084/​jem.​20061931 PubMedCentral PubMed CrossRef
    2.Adams RA, Schachtrup C, Davalos D, Tsigelny I, Akassoglou K (2007) Fibrinogen signal transduction as a mediator and therapeutic target in inflammation: lessons from multiple sclerosis. Curr Med Chem 14:2925–2936PubMed CrossRef
    3.Aisen PS, Davis KL, Berg JD, Schafer K, Campbell K, Thomas RG, Weiner MF, Farlow MR, Sano M, Grundman M et al (2000) A randomized controlled trial of prednisone in Alzheimer’s disease. Alzheimer’s Disease Cooperative Study. Neurology 54:588–593PubMed CrossRef
    4.Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL, Farlow MR, Jin S, Thomas RG, Thal LJ et al (2003) Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289:2819–2826. doi:10.​1001/​jama.​289.​21.​2819 PubMed CrossRef
    5.Aisen PS, Schmeidler J, Pasinetti GM (2002) Randomized pilot study of nimesulide treatment in Alzheimer’s disease. Neurology 58:1050–1054PubMed CrossRef
    6.Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14:1142–1149. doi:10.​1038/​nn.​2887 PubMed CrossRef
    7.Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543. doi:10.​1038/​nn2014 PubMed CrossRef
    8.Alves TR, Lima FRS, Kahn SA, Lobo D, Dubois LGF, Soletti R, Borges H, Neto VM (2011) Glioblastoma cells: a heterogeneous and fatal tumor interacting with the parenchyma. Life Sci 89:532–539. doi:10.​1016/​j.​lfs.​2011.​04.​022 PubMed CrossRef
    9.Amiri-Nikpour MR, Nazarbaghi S, Hamdi-Holasou M, Rezaei Y (2015) An open-label evaluator-blinded clinical study of minocycline neuroprotection in ischemic stroke: gender-dependent effect. Acta Neurol Scand 131:45–50. doi:10.​1111/​ane.​12296 PubMed CrossRef
    10.Arnold T, Betsholtz C (2013) Correction: the importance of microglia in the development of the vasculature in the central nervous system. Vasc Cell 5:12. doi:10.​1186/​2045-824X-5-12 PubMedCentral PubMed CrossRef
    11.Asahina M, Yoshiyama Y, Hattori T (2001) Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin Neuropathol 20:60–63PubMed
    12.Barcia C, Bautista V, Sanchez-Bahillo A, Fernandez-Villalba E, Faucheux B, Poza y Poza M, Fernandez Barreiro A, Hirsch EC, Herrero MT (2005) Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. J Neural Transm 112:1237–1248. doi:10.​1007/​s00702-004-0256-2 PubMed CrossRef
    13.Barkauskas DS, Dixon Dorand R, Myers JT, Evans TA, Barkauskas KJ, Askew D, Purgert R, Huang AY (2015) Focal transient CNS vessel leak provides a tissue niche for sequential immune cell accumulation during the asymptomatic phase of EAE induction. Exp Neurol 266:74–85. doi:10.​1016/​j.​expneurol.​2015.​02.​018 PubMed CrossRef
    14.Barten DM, Albright CF (2008) Therapeutic strategies for Alzheimer’s disease. Mol Neurobiol 37:171–186. doi:10.​1007/​s12035-008-8031-2 PubMed CrossRef
    15.Bell-Temin H, Culver-Cochran AE, Chaput D, Carlson CM, Kuehl MN, Burkhardt BR, Bickford PC, Liu B, Stevens SM Jr (2015) Novel molecular insights into classical and alternative activation states of microglia as revealed by SILAC-based proteomics. Mol Cell Proteom MCP. doi:10.​1074/​mcp.​M115.​053926
    16.Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113. doi:10.​1007/​s00401-009-0522-3 PubMedCentral PubMed CrossRef
    17.Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R, Hohlfeld R, Wekerle H (2014) From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 54:33–50. doi:10.​1016/​j.​jaut.​2014.​06.​004 PubMed CrossRef
    18.Blouw B, Song H, Tihan T, Bosze J, Ferrara N, Gerber HP, Johnson RS, Bergers G (2003) The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4:133–146PubMed CrossRef
    19.Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202:17–20PubMed CrossRef
    20.Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39:3–18. doi:10.​1111/​nan.​12011 PubMed CrossRef
    21.Boroujerdi A, Welser-Alves JV, Milner R (2013) Extensive vascular remodeling in the spinal cord of pre-symptomatic experimental autoimmune encephalomyelitis mice; increased vessel expression of fibronectin and the alpha5beta1 integrin. Exp Neurol 250:43–51. doi:10.​1016/​j.​expneurol.​2013.​09.​009 PubMedCentral PubMed CrossRef
    22.Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, Rosenkrantz LL, Imboywa S, Lee M, Von Korff A et al (2013) CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16:848–850. doi:10.​1038/​nn.​3435 PubMedCentral PubMed CrossRef
    23.Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM et al (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Investig 119:182–192. doi:10.​1172/​JCI36470 PubMedCentral PubMed
    24.Brown GC, Neher JJ (2014) Microglial phagocytosis of live neurons. Nat Rev Neurosci 15:209–216. doi:10.​1038/​nrn3710 PubMed CrossRef
    25.Bruck W, Bitsch A, Kolenda H, Bruck Y, Stiefel M, Lassmann H (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42:783–793. doi:10.​1002/​ana.​410420515 PubMed CrossRef
    26.Bruttger J, Karram K, Wortge S, Regen T, Marini F, Hoppmann N, Klein M, Blank T, Yona S, Wolf Y et al (2015) Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43:92–106. doi:10.​1016/​j.​immuni.​2015.​06.​012 PubMed CrossRef
    27.Cacabelos R, Barquero M, Garcia P, Alvarez XA, Varela de Seijas E (1991) Cerebrospinal fluid interleukin-1 beta (IL-1 beta) in Alzheimer’s disease and neurological disorders. Methods Find Exp Clin Pharmacol 13:455–458PubMed
    28.Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evrard P et al (1996) Role of tissue factor in embryonic blood vessel development. Nature 383:73–75. doi:10.​1038/​383073a0 PubMed CrossRef
    29.Cartier N, Lewis CA, Zhang R, Rossi FM (2014) The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol 128:363–380. doi:10.​1007/​s00401-014-1330-y PubMedCentral PubMed CrossRef
    30.Carvey PM, Zhao CH, Hendey B, Lum H, Trachtenberg J, Desai BS, Snyder J, Zhu YG, Ling ZD (2005) 6-Hydroxydopamine-induced alterations in blood–brain barrier permeability. Eur J Neurosci 22:1158–1168. doi:10.​1111/​j.​1460-9568.​2005.​04281.​x PubMed CrossRef
    31.Chao Y, Wong SC, Tan EK (2014) Evidence of inflammatory system involvement in Parkinson’s disease. BioMed Res Int 2014:308654. doi:10.​1155/​2014/​308654 PubMedCentral PubMed
    32.Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G, Capecchi MR (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141:775–785. doi:10.​1016/​j.​cell.​2010.​03.​055 PubMedCentral PubMed CrossRef
    33.Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98. doi:10.​1186/​1742-2094-11-98 PubMedCentral PubMed CrossRef
    34.Constantinescu CS, Asher A, Fryze W, Kozubski W, Wagner F, Aram J, Tanasescu R, Korolkiewicz RP, Dirnberger-Hertweck M, Steidl S et al (2015) Randomized phase 1b trial of MOR103, a human antibody to GM-CSF, in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2:e117. doi:10.​1212/​NXI.​0000000000000117​ PubMedCentral PubMed CrossRef
    35.Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. doi:10.​1038/​nn1472 PubMed CrossRef
    36.Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, Deerinck TJ, Smirnoff DS, Bedard C, Hakozaki H et al (2012) Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun 3:1227. doi:10.​1038/​ncomms2230 PubMedCentral PubMed CrossRef
    37.Davies DC, Hardy JA (1988) Blood brain barrier in ageing and Alzheimer’s disease. Neurobiol Aging 9:46–48PubMed CrossRef
    38.Davies LC, Rosas M, Jenkins SJ, Liao CT, Scurr MJ, Brombacher F, Fraser DJ, Allen JE, Jones SA, Taylor PR (2013) Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat Commun 4:1886. doi:10.​1038/​ncomms2877
    39.De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226. doi:10.​1016/​j.​ccr.​2005.​08.​002 PubMed CrossRef
    40.Dénes A, Ferenczi S, Halász J, Környei Z, Kovács KJ (2008) Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab 28:1707–1721. doi:10.​1038/​jcbfm.​2008.​64 PubMed CrossRef
    41.Desai Bradaric B, Patel A, Schneider JA, Carvey PM, Hendey B (2012) Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm 119:59–71. doi:10.​1007/​s00702-011-0684-8 PubMed CrossRef
    42.Dickson DW (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56:321–339PubMed CrossRef
    43.Dzamko N, Geczy CL, Halliday GM (2015) Inflammation is genetically implicated in Parkinson’s disease. Neuroscience 302:89–102. doi:10.​1016/​j.​neuroscience.​2014.​10.​028 PubMed CrossRef
    44.El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438. doi:10.​1038/​nm1555 PubMed CrossRef
    45.El Khoury JB, Moore KJ, Means TK, Leung J, Terada K, Toft M, Freeman MW, Luster AD (2003) CD36 mediates the innate host response to beta-amyloid. J Exp Med 197:1657–1666. doi:10.​1084/​jem.​20021546 PubMedCentral PubMed CrossRef
    46.Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397. doi:10.​1016/​j.​neuron.​2014.​02.​040 PubMedCentral PubMed CrossRef
    47.Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840. doi:10.​1182/​blood-2009-12-257832 PubMedCentral PubMed CrossRef
    48.Farfara D, Lifshitz V, Frenkel D (2008) Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer’s disease. J Cell Mol Med 12:762–780. doi:10.​1111/​j.​1582-4934.​2008.​00314.​x PubMedCentral PubMed CrossRef
    49.Flavin MP, Zhao G, Ho LT (2000) Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia 29:347–354PubMed CrossRef
    50.Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152:307–317PubMedCentral PubMed
    51.Fu R, Shen Q, Xu P, Luo JJ, Tang Y (2014) Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 49:1422–1434. doi:10.​1007/​s12035-013-8620-6 PubMedCentral PubMed CrossRef
    52.Fujiwara Y, Komohara Y, Ikeda T, Takeya M (2011) Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B in tumor cells and tumor-associated macrophages. Cancer Sci 102:206–211. doi:10.​1111/​j.​1349-7006.​2010.​01772.​x PubMed CrossRef
    53.Fujiwara Y, Komohara Y, Kudo R, Tsurushima K, Ohnishi K, Ikeda T, Takeya M (2011) Oleanolic acid inhibits macrophage differentiation into the M2 phenotype and glioblastoma cell proliferation by suppressing the activation of STAT3. Oncol Rep 26:1533–1537. doi:10.​3892/​or.​2011.​1454 PubMed
    54.Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61:6020–6024PubMed
    55.Furlan M, Marchal G, Viader F, Derlon JM, Baron JC (1996) Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 40:216–226. doi:10.​1002/​ana.​410400213 PubMed CrossRef
    56.Gabrusiewicz K, Ellert-Miklaszewska A, Lipko M, Sielska M, Frankowska M, Kaminska B (2011) Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS ONE 6:e23902. doi:10.​1371/​journal.​pone.​0023902 PubMedCentral PubMed CrossRef
    57.Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28:12–18. doi:10.​1016/​j.​it.​2006.​11.​004 PubMed CrossRef
    58.Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661. doi:10.​1126/​science.​1178331 PubMedCentral PubMed CrossRef
    59.Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E et al (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40:1849–1857. doi:10.​1161/​strokeaha.​108.​534503 PubMed CrossRef
    60.Gelosa P, Lecca D, Fumagalli M, Wypych D, Pignieri A, Cimino M, Verderio C, Enerbäck M, Nikookhesal E, Tremoli E et al (2014) Microglia is a key player in the reduction of stroke damage promoted by the new antithrombotic agent ticagrelor. J Cereb Blood Flow Metab 34:979–988. doi:10.​1038/​jcbfm.​2014.​45 PubMedCentral PubMed CrossRef
    61.Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. doi:10.​1126/​science.​1194637 PubMedCentral PubMed CrossRef
    62.Girolamo F, Coppola C, Ribatti D, Trojano M (2014) Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2:84. doi:10.​1186/​s40478-014-0084-z PubMedCentral PubMed CrossRef
    63.Graeber MB, Streit WJ, Kreutzberg GW (1989) Identity of ED2-positive perivascular cells in rat brain. J Neurosci Res 22:103–106. doi:10.​1002/​jnr.​490220114 PubMed CrossRef
    64.Gray MT, Woulfe JM (2015) Striatal blood–brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab 35:747–750. doi:10.​1038/​jcbfm.​2015.​32 PubMed CrossRef
    65.Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–643. doi:10.​1016/​j.​neuron.​2013.​04.​014 PubMedCentral PubMed CrossRef
    66.Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL 3rd, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86:7611–7615PubMedCentral PubMed CrossRef
    67.Guerreiro R, Hardy J (2013) TREM2 and neurodegenerative disease. N Engl J Med 369:1569–1570PubMed
    68.Halliday G, Robinson SR, Shepherd C, Kril J (2000) Alzheimer’s disease and inflammation: a review of cellular and therapeutic mechanisms. Clin Exp Pharmacol Physiol 27:1–8PubMed CrossRef
    69.Hanisch UK (2013) Functional diversity of microglia—how heterogeneous are they to begin with? Front Cell Neurosci 7:65. doi:10.​3389/​fncel.​2013.​00065 PubMedCentral PubMed CrossRef
    70.Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093. doi:10.​1038/​ng.​440 PubMedCentral PubMed CrossRef
    71.Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139:313–326. doi:10.​1016/​j.​pharmthera.​2013.​04.​013 PubMedCentral PubMed CrossRef
    72.Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519. doi:10.​1038/​nn1805 PubMed CrossRef
    73.Healy LM, Michell-Robinson MA, Antel JP (2015) Regulation of human glia by multiple sclerosis disease modifying therapies. Semin Immunopathol. doi:10.​1007/​s00281-015-0514-4 PubMed
    74.Heiss W-D (2012) The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci 1268:26–34. doi:10.​1111/​j.​1749-6632.​2012.​06668.​x PubMed CrossRef
    75.Heiss WD (2000) Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 20:1276–1293. doi:10.​1097/​00004647-200009000-00002 PubMed CrossRef
    76.Heiss WD (2012) The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci 1268:26–34. doi:10.​1111/​j.​1749-6632.​2012.​06668.​x PubMed CrossRef
    77.Herrera AJ, Espinosa-Oliva AM, Carrillo-Jimenez A, Oliva-Martin MJ, Garcia-Revilla J, Garcia-Quintanilla A, de Pablos RM, Venero JL (2015) Relevance of chronic stress and the two faces of microglia in Parkinson’s disease. Front Cell Neurosci 9:312. doi:10.​3389/​fncel.​2015.​00312 PubMedCentral PubMed CrossRef
    78.Herrero MT, Estrada C, Maatouk L, Vyas S (2015) Inflammation in Parkinson’s disease: role of glucocorticoids. Front Neuroanat 9:32. doi:10.​3389/​fnana.​2015.​00032 PubMedCentral PubMed CrossRef
    79.Hickey WF, Kimura H (1987) Graft-vs.-host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T lymphocytes in rat central nervous system. Proc Natl Acad Sci USA 84:2082–2086PubMedCentral PubMed CrossRef
    80.Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28:8354–8360. doi:10.​1523/​JNEUROSCI.​0616-08.​2008 PubMedCentral PubMed CrossRef
    81.Hickman SE, El Khoury J (2010) Mechanisms of mononuclear phagocyte recruitment in Alzheimer’s disease. CNS Neurol Disord Drug Targets 9:168–173PubMedCentral PubMed CrossRef
    82.Hirao K, Ohnishi T, Hirata Y, Yamashita F, Mori T, Moriguchi Y, Matsuda H, Nemoto K, Imabayashi E, Yamada M et al (2005) The prediction of rapid conversion to Alzheimer’s disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 28:1014–1021. doi:10.​1016/​j.​neuroimage.​2005.​06.​066 PubMed CrossRef
    83.Hristova M, Cuthill D, Zbarsky V, Acosta-Saltos A, Wallace A, Blight K, Buckley SM, Peebles D, Heuer H, Waddington SN et al (2010) Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development. Glia 58:11–28. doi:10.​1002/​glia.​20896 PubMed CrossRef
    84.Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43:3063–3070. doi:10.​1161/​strokeaha.​112.​659656 PubMed CrossRef
    85.Hussain S, Yang D, Suki D, Grimm E, Heimberger A (2006) Innate immune functions of microglia isolated from human glioma patients. J Transl Med 4:1–9. doi:10.​1186/​1479-5876-4-15 CrossRef
    86.Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB (2006) The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 8:261–279. doi:10.​1215/​15228517-2006-008 PubMedCentral PubMed CrossRef
    87.Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32:1208–1215PubMed CrossRef
    88.Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610-622. doi:http://​www.​nature.​com/​nrn/​journal/​v8/​n8/​suppinfo/​nrn2175_​S1.​html
    89.Jian Liu K, Rosenberg GA (2005) Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med 39:71–80. doi:10.​1016/​j.​freeradbiomed.​2005.​03.​033 PubMed CrossRef
    90.Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, Jagust WJ, Gorno-Tempini ML, Schuff N (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234:851–859. doi:10.​1148/​radiol.​2343040197 PubMedCentral PubMed CrossRef
    91.Jolivel V, Bicker F, Biname F, Ploen R, Keller S, Gollan R, Jurek B, Birkenstock J, Poisa-Beiro L, Bruttger J et al (2015) Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol 129:279–295. doi:10.​1007/​s00401-014-1372-1 PubMed CrossRef
    92.Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81:447–455PubMed CrossRef
    93.Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood–brain barrier damage in experimental stroke. Stroke 38:3000–3006. doi:10.​1161/​strokeaha.​107.​489765 PubMed CrossRef
    94.Kalaria RN, Harik SI (1989) Reduced glucose transporter at the blood–brain barrier and in cerebral cortex in Alzheimer disease. J Neurochem 53:1083–1088PubMed CrossRef
    95.Kermode AG, Thompson AJ, Tofts P, MacManus DG, Kendall BE, Kingsley DP, Moseley IF, Rudge P, McDonald WI (1990) Breakdown of the blood–brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 113(Pt 5):1477–1489PubMed CrossRef
    96.Kida S, Steart PV, Zhang ET, Weller RO (1993) Perivascular cells act as scavengers in the cerebral perivascular spaces and remain distinct from pericytes, microglia and macrophages. Acta Neuropathol 85:646–652PubMed CrossRef
    97.Kieburtz K, Wunderle KB (2013) Parkinson’s disease: evidence for environmental risk factors. Mov Disord 28:8–13. doi:10.​1002/​mds.​25150 PubMed CrossRef
    98.Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Joong Lee S, Masliah E, Hwang D, Lee HJ et al (2013) Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562. doi:10.​1038/​ncomms2534 PubMedCentral PubMed CrossRef
    99.Kirk J, Plumb J, Mirakhur M, McQuaid S (2003) Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood–brain barrier leakage and active demyelination. J Pathol 201:319–327. doi:10.​1002/​path.​1434 PubMed CrossRef
    100.Klein R, Roggendorf W (2001) Increased microglia proliferation separates pilocytic astrocytomas from diffuse astrocytomas: a double labeling study. Acta Neuropathol 101:245–248PubMed
    101.Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H, Suzumura A, Ishiguro N et al (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4:e525. doi:10.​1038/​cddis.​2013.​54 PubMedCentral PubMed CrossRef
    102.Kofler J, Wiley CA (2011) Microglia: key innate immune cells of the brain. Toxicol Pathol 39:103–114. doi:10.​1177/​0192623310387619​ PubMed CrossRef
    103.Kohler E, Prentice DA, Bates TR, Hankey GJ, Claxton A, van Heerden J, Blacker D (2013) Intravenous minocycline in acute stroke: a randomized, controlled pilot study and meta-analysis. Stroke 44:2493–2499. doi:10.​1161/​strokeaha.​113.​000780 PubMed CrossRef
    104.Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Czlonkowski A, Czlonkowska A (1998) Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39:167–180PubMed CrossRef
    105.Kostianovsky AM, Maier LM, Anderson RC, Bruce JN, Anderson DE (2008) Astrocytic regulation of human monocytic/microglial activation. J Immunol 181:5425–5432PubMed CrossRef
    106.Kunsch C, Medford RM (1999) Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 85:753–766PubMed CrossRef
    107.Kurz H, Christ B (1998) Embryonic CNS macrophages and microglia do not stem from circulating, but from extravascular precursors. Glia 22:98–102PubMed CrossRef
    108.Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099. doi:10.​1038/​ng.​439 PubMed CrossRef
    109.Lampl Y, Boaz M, Gilad R, Lorberboym M, Dabby R, Rapoport A, Anca-Hershkowitz M, Sadeh M (2007) Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69:1404–1410. doi:10.​1212/​01.​wnl.​0000277487.​04281.​db PubMed CrossRef
    110.Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218. doi:10.​1111/​j.​1750-3639.​2007.​00064.​x PubMed CrossRef
    111.Lassmann H, Zimprich F, Vass K, Hickey WF (1991) Microglial cells are a component of the perivascular glia limitans. J Neurosci Res 28:236–243. doi:10.​1002/​jnr.​490280211 PubMed CrossRef
    112.Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170. doi:10.​1016/​0306-4522(90)90229-W PubMed CrossRef
    113.Lee Y, Lee SR, Choi SS, Yeo HG, Chang KT, Lee HJ (2014) Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. BioMed Res Int 2014:297241. doi:10.​1155/​2014/​297241 PubMedCentral PubMed
    114.Li G, Hattermann K, Mentlein R, Mehdorn HM, Held-Feindt J (2013) The transmembrane chemokines CXCL16 and CX3CL1 and their receptors are expressed in human meningiomas. Oncol Rep 29:563–570. doi:10.​3892/​or.​2012.​2164 PubMed
    115.Li J, McCullough LD (2009) Sex differences in minocycline-induced neuroprotection after experimental stroke. J Cereb Blood Flow Metab 29:670–674. doi:10.​1038/​jcbfm.​2009.​3 PubMedCentral PubMed CrossRef
    116.Li W, Graeber MB (2012) The molecular profile of microglia under the influence of glioma. Neuro Oncol 14:958–978. doi:10.​1093/​neuonc/​nos116 PubMedCentral PubMed CrossRef
    117.Li Y, Liu DX, Li MY, Qin XX, Fang WG, Zhao WD, Chen YH (2014) Ephrin-A3 and ephrin-A4 contribute to microglia-induced angiogenesis in brain endothelial cells. Anat Rec (Hoboken) 297:1908–1918. doi:10.​1002/​ar.​22998 CrossRef
    118.Liu M, Bing G (2011) Lipopolysaccharide animal models for Parkinson’s disease. Parkinson’s Dis 2011:327089. doi:10.​4061/​2011/​327089
    119.Lo EH (2008) A new penumbra: transitioning from injury into repair after stroke. Nat Med 14:497–500. doi:10.​1038/​nm1735 PubMed CrossRef
    120.Lopes MBS (2003) Angiogenesis in brain tumors. Microsc Res Tech 60:225–230. doi:10.​1002/​jemt.​10260 PubMed CrossRef
    121.Lorger M (2012) Tumor microenvironment in the brain. Cancers 4:218–243. doi:10.​3390/​cancers4010218 PubMedCentral PubMed CrossRef
    122.Lorger M, Krueger JS, O’Neal M, Staflin K, Felding-Habermann B (2009) Activation of tumor cell integrin alphavbeta3 controls angiogenesis and metastatic growth in the brain. Proc Natl Acad Sci USA 106:10666–10671. doi:10.​1073/​pnas.​0903035106 PubMedCentral PubMed CrossRef
    123.Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341. doi:10.​1038/​nature14432 PubMedCentral PubMed CrossRef
    124.Lue LF, Rydel R, Brigham EF, Yang LB, Hampel H, Murphy GM Jr, Brachova L, Yan SD, Walker DG, Shen Y et al (2001) Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia 35:72–79PubMed CrossRef
    125.Machado LS, Kozak A, Ergul A, Hess DC, Borlongan CV, Fagan SC (2006) Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci 7:56. doi:10.​1186/​1471-2202-7-56 PubMedCentral PubMed CrossRef
    126.Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555. doi:10.​1016/​S1471-4906(02)02302-5 PubMed CrossRef
    127.Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130:2800–2815. doi:10.​1093/​brain/​awm236 PubMedCentral PubMed CrossRef
    128.Markovic DS, Vinnakota K, van Rooijen N, Kiwit J, Synowitz M, Glass R, Kettenmann H (2011) Minocycline reduces glioma expansion and invasion by attenuating microglial MT1-MMP expression. Brain Behav Immun 25:624–628. doi:10.​1016/​j.​bbi.​2011.​01.​015 PubMed CrossRef
    129.Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, et al (2009) Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci USA 106:12530–12535PubMedCentral PubMed CrossRef
    130.Mato M, Ookawara S, Sakamoto A, Aikawa E, Ogawa T, Mitsuhashi U, Masuzawa T, Suzuki H, Honda M, Yazaki Y et al (1996) Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex. Proc Natl Acad Sci USA 93:3269–3274PubMedCentral PubMed CrossRef
    131.Matsubara T, Ono T, Yamanoi A, Tachibana M, Nagasue N (2007) Fractalkine-CX3CR1 axis regulates tumor cell cycle and deteriorates prognosis after radical resection for hepatocellular carcinoma. J Surg Oncol 95:241–249. doi:10.​1002/​jso.​20642 PubMed CrossRef
    132.Matsumoto J, Dohgu S, Takata F, Nishioku T, Sumi N, Machida T, Takahashi H, Yamauchi A, Kataoka Y (2012) Lipopolysaccharide-activated microglia lower P-glycoprotein function in brain microvascular endothelial cells. Neurosci Lett 524:45–48. doi:10.​1016/​j.​neulet.​2012.​07.​004 PubMed CrossRef
    133.Melani A, Amadio S, Gianfriddo M, Vannucchi MG, Volonte C, Bernardi G, Pedata F, Sancesario G (2006) P2X7 receptor modulation on microglial cells and reduction of brain infarct caused by middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 26:974–982. doi:10.​1038/​sj.​jcbfm.​9600250 PubMed CrossRef
    134.Meyer-Luehmann M, Prinz M (2015) Myeloid cells in Alzheimer’s Disease: culprits, victims or innocent bystanders? Trends Neurosci 38:659–668. doi:10.​1016/​j.​tins.​2015.​08.​011 PubMed CrossRef
    135.Mildner A, Mack M, Schmidt H, Bruck W, Djukic M, Zabel MD, Hille A, Priller J, Prinz M (2009) CCR2+ Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132:2487–2500. doi:10.​1093/​brain/​awp144 PubMed CrossRef
    136.Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101:249–255PubMed
    137.Mizutani M, Pino PA, Saederup N, Charo IF, Ransohoff RM, Cardona AE (2012) The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J Immunol 188:29–36. doi:10.​4049/​jimmunol.​1100421 PubMedCentral PubMed CrossRef
    138.Moehle MS, West AB (2015) M1 and M2 immune activation in Parkinson’s Disease: foe and ally? Neuroscience 302:59–73. doi:10.​1016/​j.​neuroscience.​2014.​11.​018 PubMed CrossRef
    139.Montaner J, Alvarez-Sabin J, Molina CA, Angles A, Abilleira S, Arenillas J, Monasterio J (2001) Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke 32:2762–2767PubMed CrossRef
    140.Morantz RA, Wood GW, Foster M, Clark M, Gollahon K (1979) Macrophages in experimental and human brain tumors. Part 1: studies of the macrophage content of experimental rat brain tumors of varying immunogenicity. J Neurosurg 50:298–304. doi:10.​3171/​jns.​1979.​50.​3.​0298 PubMed CrossRef
    141.Morantz RA, Wood GW, Foster M, Clark M, Gollahon K (1979) Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors. J Neurosurg 50:305–311. doi:10.​3171/​jns.​1979.​50.​3.​0305 PubMed CrossRef
    142.Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198. doi:10.​1016/​j.​neuron.​2010.​07.​002 PubMedCentral PubMed CrossRef
    143.Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE (2006) Neuroinflammation, Oxidative stress and the pathogenesis of Parkinson’s Disease. Clin Neurosci Res 6:261–281. doi:10.​1016/​j.​cnr.​2006.​09.​006 PubMedCentral PubMed CrossRef
    144.Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. doi:10.​1146/​annurev-immunol-032713-120240 PubMed CrossRef
    145.Nicholas MK, Antel JP, Stefansson K, Arnason BG (1987) Rejection of fetal neocortical neural transplants by H-2 incompatible mice. J Immunol 139:2275–2283PubMed
    146.Nikolic I, Stankovic ND, Bicker F, Meister J, Braun H, Awwad K, Baumgart J, Simon K, Thal SC, Patra C et al (2013) EGFL7 ligates alphavbeta3 integrin to enhance vessel formation. Blood 121:3041–3050. doi:10.​1182/​blood-2011-11-394882 PubMed CrossRef
    147.Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952. doi:10.​1056/​NEJM200009283431​307 PubMed CrossRef
    148.Opal SM, van der Poll T (2015) Endothelial barrier dysfunction in septic shock. J Intern Med 277:277–293. doi:10.​1111/​joim.​12331 PubMed CrossRef
    149.Ortiz GG, Pacheco-Moises FP, Macias-Islas MA, Flores-Alvarado LJ, Mireles-Ramirez MA, Gonzalez-Renovato ED, Hernandez-Navarro VE, Sanchez-Lopez AL, Alatorre-Jimenez MA (2014) Role of the blood–brain barrier in multiple sclerosis. Arch Med Res 45:687–697. doi:10.​1016/​j.​arcmed.​2014.​11.​013 PubMed CrossRef
    150.Padden M, Leech S, Craig B, Kirk J, Brankin B, McQuaid S (2007) Differences in expression of junctional adhesion molecule-A and beta-catenin in multiple sclerosis brain tissue: increasing evidence for the role of tight junction pathology. Acta Neuropathol 113:177–186. doi:10.​1007/​s00401-006-0145-x PubMed CrossRef
    151.Paresce DM, Ghosh RN, Maxfield FR (1996) Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron 17:553–565PubMed CrossRef
    152.Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609. doi:10.​1016/​j.​cell.​2013.​11.​030 PubMedCentral PubMed CrossRef
    153.Patel AR, Ritzel R, McCullough LD, Liu F (2013) Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol 5:73–90PubMedCentral PubMed
    154.Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ (2005) Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation 2:9. doi:10.​1186/​1742-2094-2-9 PubMedCentral PubMed CrossRef
    155.Pihlstrom L, Axelsson G, Bjornara KA, Dizdar N, Fardell C, Forsgren L, Holmberg B, Larsen JP, Linder J, Nissbrandt H et al (2013) Supportive evidence for 11 loci from genome-wide association studies in Parkinson’s disease. Neurobiol Aging 34(1708):e1707–e1713. doi:10.​1016/​j.​neurobiolaging.​2012.​10.​019
    156.Pisani V, Stefani A, Pierantozzi M, Natoli S, Stanzione P, Franciotta D, Pisani A (2012) Increased blood-cerebrospinal fluid transfer of albumin in advanced Parkinson’s disease. J Neuroinflammation 9:188. doi:10.​1186/​1742-2094-9-188 PubMedCentral PubMed CrossRef
    157.Plate KH, Mennel HD (1995) Vascular morphology and angiogenesis in glial tumors. Exp Toxicol Pathol 47:89–94. doi:10.​1016/​S0940-2993(11)80292-7 PubMed CrossRef
    158.Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887. doi:10.​1016/​j.​cell.​2011.​08.​039 PubMed CrossRef
    159.Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312. doi:10.​1038/​nrn3722 PubMed CrossRef
    160.Prinz M, Tay TL, Wolf Y, Jung S (2014) Microglia: unique and common features with other tissue macrophages. Acta Neuropathol 128:319–331. doi:10.​1007/​s00401-014-1267-1 PubMed CrossRef
    161.Proescholdt MA, Jacobson S, Tresser N, Oldfield EH, Merrill MJ (2002) Vascular endothelial growth factor is expressed in multiple sclerosis plaques and can induce inflammatory lesions in experimental allergic encephalomyelitis rats. J Neuropathol Exp Neurol 61:914–925PubMed CrossRef
    162.Pul R, Moharregh-Khiabani D, Skuljec J, Skripuletz T, Garde N, Voss EV, Stangel M (2011) Glatiramer acetate modulates TNF-alpha and IL-10 secretion in microglia and promotes their phagocytic activity. J Neuroimmune Pharmacol 6:381–388. doi:10.​1007/​s11481-010-9248-1 PubMed CrossRef
    163.Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272. doi:10.​1038/​nm.​3337 PubMedCentral PubMed CrossRef
    164.Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. doi:10.​1146/​annurev.​immunol.​021908.​132528 PubMed CrossRef
    165.Rogers J, Kirby LC, Hempelman SR, Berry DL, McGeer PL, Kaszniak AW, Zalinski J, Cofield M, Mansukhani L, Willson P et al (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43:1609–1611PubMed CrossRef
    166.Rosell A, Ortega-Aznar A, Alvarez-Sabin J, Fernandez-Cadenas I, Ribo M, Molina CA, Lo EH, Montaner J (2006) Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 37:1399–1406. doi:10.​1161/​01.​STR.​0000223001.​06264.​af PubMed CrossRef
    167.Russo I, Bubacco L, Greggio E (2014) LRRK2 and neuroinflammation: partners in crime in Parkinson’s disease? J Neuroinflammation 11:52. doi:10.​1186/​1742-2094-11-52 PubMedCentral PubMed CrossRef
    168.Rymo SF, Gerhardt H, Wolfhagen Sand F, Lang R, Uv A, Betsholtz C (2011) A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS ONE 6:e15846. doi:10.​1371/​journal.​pone.​0015846 PubMedCentral PubMed CrossRef
    169.Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Pendu R, Marky A, Lenting PJ, Wu Z, Zarcone T et al (2007) Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 13:1029–1031. doi:10.​1038/​nm1635 PubMedCentral PubMed CrossRef
    170.Samuraki M, Matsunari I, Chen WP, Yajima K, Yanase D, Fujikawa A, Takeda N, Nishimura S, Matsuda H, Yamada M (2007) Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging 34:1658–1669. doi:10.​1007/​s00259-007-0454-x PubMed CrossRef
    171.Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183:25–33PubMed CrossRef
    172.Segal BM (2014) Stage-specific immune dysregulation in multiple sclerosis. J Interferon Cytokine Res 34:633–640. doi:10.​1089/​jir.​2014.​0025 PubMedCentral PubMed CrossRef
    173.Sheng J, Ruedl C, Karjalainen K (2015) Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43:382–393. doi:10.​1016/​j.​immuni.​2015.​07.​016 PubMed CrossRef
    174.Siffrin V, Vogt J, Radbruch H, Nitsch R, Zipp F (2010) Multiple sclerosis—candidate mechanisms underlying CNS atrophy. Trends Neurosci 33:202–210. doi:10.​1016/​j.​tins.​2010.​01.​002 PubMed CrossRef
    175.Soulet D, Rivest S (2008) Microglia. Curr Biol 18:R506–R508. doi:10.​1016/​j.​cub.​2008.​04.​047 PubMed CrossRef
    176.Stefanik DF, Fellows WK, Rizkalla LR, Rizkalla WM, Stefanik PP, Deleo AB, Welch WC (2001) Monoclonal antibodies to vascular endothelial growth factor (VEGF) and the VEGF receptor, FLT-1, inhibit the growth of C6 glioma in a mouse xenograft. J Neurooncol 55:91–100PubMed CrossRef
    177.Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA et al (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155–161. doi:10.​1038/​ni.​1836 PubMedCentral PubMed CrossRef
    178.Streit WJ, Graeber MB, Kreutzberg GW (1988) Functional plasticity of microglia: a review. Glia 1:301–307. doi:10.​1002/​glia.​440010502 PubMed CrossRef
    179.Sumi N, Nishioku T, Takata F, Matsumoto J, Watanabe T, Shuto H, Yamauchi A, Dohgu S, Kataoka Y (2010) Lipopolysaccharide-activated microglia induce dysfunction of the blood–brain barrier in rat microvascular endothelial cells co-cultured with microglia. Cell Mol Neurobiol 30:247–253. doi:10.​1007/​s10571-009-9446-7 PubMed CrossRef
    180.Tang Z, Gan Y, Liu Q, Yin J-X, Liu Q, Shi J, Shi F-D (2014) CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflammation 11:26. doi:10.​1186/​1742-2094-11-26 PubMedCentral PubMed CrossRef
    181.Torres-Platas SG, Comeau S, Rachalski A, Bo GD, Cruceanu C, Turecki G, Giros B, Mechawar N (2014) Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation 11:12. doi:10.​1186/​1742-2094-11-12 PubMedCentral PubMed CrossRef
    182.Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA (2006) Microglia recognize double-stranded RNA via TLR3. J Immunol 176:3804–3812PubMed CrossRef
    183.van Rossum D, Hanisch U-K (2004) Microglia. Metab Brain Dis 19:393–411. doi:10.​1023/​B:​MEBR.​0000043984.​73063.​d8 PubMed CrossRef
    184.Vos CM, Geurts JJ, Montagne L, van Haastert ES, Bo L, van der Valk P, Barkhof F, de Vries HE (2005) Blood–brain barrier alterations in both focal and diffuse abnormalities on postmortem MRI in multiple sclerosis. Neurobiol Dis 20:953–960. doi:10.​1016/​j.​nbd.​2005.​06.​012 PubMed CrossRef
    185.Wada K, Arai H, Takanashi M, Fukae J, Oizumi H, Yasuda T, Mizuno Y, Mochizuki H (2006) Expression levels of vascular endothelial growth factor and its receptors in Parkinson’s disease. NeuroReport 17:705–709. doi:10.​1097/​01.​wnr.​0000215769.​71657.​65 PubMed CrossRef
    186.Wang S, Chu CH, Stewart T, Ginghina C, Wang Y, Nie H, Guo M, Wilson B, Hong JS, Zhang J (2015) Alpha-synuclein, a chemoattractant, directs microglial migration via H2O2-dependent Lyn phosphorylation. Proc Natl Acad Sci USA 112:E1926–E1935. doi:10.​1073/​pnas.​1417883112 PubMedCentral PubMed CrossRef
    187.Wegiel J, Wisniewski HM (1990) The complex of microglial cells and amyloid star in three-dimensional reconstruction. Acta Neuropathol 81:116–124PubMed CrossRef
    188.Wei J, Gabrusiewicz K, Heimberger A (2013) The Controversial role of microglia in malignant gliomas. Clin Dev Immunol 2013:12. doi:10.​1155/​2013/​285246 CrossRef
    189.Welser JV, Li L, Milner R (2010) Microglial activation state exerts a biphasic influence on brain endothelial cell proliferation by regulating the balance of TNF and TGF-beta1. J Neuroinflammation 7:89. doi:10.​1186/​1742-2094-7-89 PubMedCentral PubMed CrossRef
    190.Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150:963–976. doi:10.​1038/​sj.​bjp.​0707167 PubMedCentral PubMed CrossRef
    191.Woo MS, Park JS, Choi IY, Kim WK, Kim HS (2008) Inhibition of MMP-3 or -9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia. J Neurochem 106:770–780. doi:10.​1111/​j.​1471-4159.​2008.​05430.​x PubMed CrossRef
    192.Wu A, Wei J, Kong L-Y, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12:1113–1125. doi:10.​1093/​neuonc/​noq082 PubMedCentral PubMed CrossRef
    193.Xu C, Wu X, Zhu J (2013) VEGF promotes proliferation of human glioblastoma multiforme stem-like cells through VEGF receptor 2. Sci World J 2013:8. doi:10.​1155/​2013/​417413
    194.Xu J, Zhu L, He S, Wu Y, Jin W, Yu T, Qu JY, Wen Z (2015) Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish. Dev Cell 34:632–641. doi:10.​1016/​j.​devcel.​2015.​08.​018 PubMed CrossRef
    195.Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG (2006) Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37:1087–1093. doi:10.​1161/​01.​STR.​0000206281.​77178.​ac PubMed CrossRef
    196.Yeung YT, Bryce NS, Adams S, Braidy N, Konayagi M, McDonald KL, Teo C, Guillemin GJ, Grewal T, Munoz L (2012) p38 MAPK inhibitors attenuate pro-inflammatory cytokine production and the invasiveness of human U251 glioblastoma cells. J Neurooncol 109:35–44. doi:10.​1007/​s11060-012-0875-7 PubMed CrossRef
    197.Yi L, Xiao H, Xu M, Ye X, Hu J, Li F, Li M, Luo C, Yu S, Bian X et al (2011) Glioma-initiating cells: a predominant role in microglia/macrophages tropism to glioma. J Neuroimmunol 232:75–82PubMed CrossRef
    198.Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6:19–33. doi:10.​1177/​1756285612461679​ PubMedCentral PubMed CrossRef
    199.Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96:13496–13500PubMedCentral PubMed CrossRef
    200.Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B (2009) Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57:1458–1467. doi:10.​1002/​glia.​20863 PubMed CrossRef
    201.Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M (2000) VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J Clin Investig 106:829–838. doi:10.​1172/​jci9369 PubMedCentral PubMed CrossRef
    202.Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC et al (2002) Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417:74–78. doi:10.​1038/​417074a PubMed CrossRef
    203.Zipp F, Gold R, Wiendl H (2013) Identification of inflammatory neuronal injury and prevention of neuronal damage in multiple sclerosis: hope for novel therapies? JAMA Neurol 70:1569–1574. doi:10.​1001/​jamaneurol.​2013.​4391 PubMed
    204.Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201. doi:10.​1016/​j.​neuron.​2008.​01.​003 PubMed CrossRef
  • 作者单位:Nevenka Dudvarski Stankovic (1) (2) (3)
    Marcin Teodorczyk (1)
    Robert Ploen (4)
    Frauke Zipp (4)
    Mirko H. H. Schmidt (1) (2) (3)

    1. Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
    2. German Cancer Consortium (DKTK), Heidelberg, Germany
    3. German Cancer Research Center (DKFZ), Heidelberg, Germany
    4. Department of Neurology, Focus Program Translational Neuroscience (FTN) and Research Center for Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Pathology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0533
文摘
Microglia are long-living resident immune cells of the brain, which secure a stable chemical and physical microenvironment necessary for the proper functioning of the central nervous system (CNS). These highly dynamic cells continuously scan their environment for pathogens and possess the ability to react to damage-induced signals in order to protect the brain. Microglia, together with endothelial cells (ECs), pericytes and astrocytes, form the functional blood–brain barrier (BBB), a specialized endothelial structure that selectively separates the sensitive brain parenchyma from blood circulation. Microglia are in bidirectional and permanent communication with ECs and their perivascular localization enables them to survey the influx of blood-borne components into the CNS. Furthermore, they may stimulate the opening of the BBB, extravasation of leukocytes and angiogenesis. However, microglia functioning requires tight control as their dysregulation is implicated in the initiation and progression of numerous neurological diseases. Disruption of the BBB, changes in blood flow, introduction of pathogens in the sensitive CNS niche, insufficient nutrient supply, and abnormal secretion of cytokines or expression of endothelial receptors are reported to prime and attract microglia. Such reactive microglia have been reported to even escalate the damage of the brain parenchyma as is the case in ischemic injuries, brain tumors, multiple sclerosis, Alzheimer's and Parkinson's disease. In this review, we present the current state of the art of the causes and mechanisms of pathological interactions between microglia and blood vessels and explore the possibilities of targeting those dysfunctional interactions for the development of future therapeutics. Keywords Blood vessels Blood–brain barrier Microglia Ischemic stroke Brain tumors Neurological pathologies

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700