High Heat Insulating Thermal Barrier Coating Designed with Large Two-Dimensional Inter-lamellar Pores
详细信息    查看全文
  • 作者:Tao Liu ; Shan-Lin Zhang ; Xiao-Tao Luo ; Guan-Jun Yang…
  • 关键词:La2Zr2O7 ; pores ; sintering ; thermal barrier coatings ; thermal conductivity
  • 刊名:Journal of Thermal Spray Technology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:25
  • 期:1-2
  • 页码:222-230
  • 全文大小:1,888 KB
  • 参考文献:1.N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284CrossRef
    2.A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman, Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD, A Review, J. Therm. Spray Technol., 2008, 17(2), p 199-213CrossRef
    3.C.U. Hardwickre and Y.C. Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, J. Thermal Spray. Technol., 2013, 22(5), p 564-576CrossRef
    4.C.J. Li, A. Ohmori, and R. McPherson, The Relationship between Microstructure and Young Modulus of Thermally Sprayed Ceramic Coatings, J. Mater. Sci., 1997, 32, p 997-1004CrossRef
    5.C.J. Li and A. Ohmori, Relationships between the Microstructure and Properties of Thermally Sprayed Deposits, J. Thermal Spray Technol., 2002, 11(3), p 365-374CrossRef
    6.R. McPherson, A Review on Microstructure and Properties of Plasma Sprayed Ceramic Coatings, Surf. Coat. Technol., 1989, 39-40, p 173-181CrossRef
    7.R. McPherson, The Relationship Between the Mechanism of Formation Microstructure and Properties of Plasma-Sprayed Coatings, Thin Solid Films, 1981, 83, p 297-310CrossRef
    8.R. McPherson, A Model for the Thermal Conductivity of Plasma-Sprayed Ceramic Coatings, Thin Solid Films, 1984, 112, p 89-95CrossRef
    9.R. Bolot, G. Antou, G. Montavon, and C. Coddet, A Two-Dimensional Heat Transfer Model for Thermal Barrier Coating Average Thermal Conductivity Computation, Numer. Heat Transf. Part A, 2005, 47, p 875-898CrossRef
    10.F. Tang and J.M. Schoenung, Evolution of Young’s Modulus of Air Plasma Sprayed Yttria-Stabilized Zirconia in Thermally Cycled Thermal Barrier Coatings, Scr. Mater., 2006, 54, p 1587-1592CrossRef
    11.R. Dutton, R. Wheeler, K.S. Ravichandran, and K. An, Effect of Heat Treatment on the Thermal Conductivity of Plasma-Sprayed Thermal Barrier Coatings, J. Thermal Spray Technol., 2000, 9(2), p 204-209CrossRef
    12.R. Bolot, J.H. Qiao, G. Bertrand, P. Bertrand, and C. Coddet, Effect of Thermal Treatment on the Effective Thermal Conductivity of YPSZ Coatings, Surf. Coat. Technol., 2010, 205, p 1034-1038CrossRef
    13.J. Wu, X.Z. Wei, N.P. Padture, N.P. Padture, P.G. Klemens, M. Gell, E. Garcı´a, P. Miranzo, and M.I. Osendi, Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications, J. Am. Ceram. Soc., 2002, 85(12), p 3031-3035CrossRef
    14.R. Vassen, X.Q. Cao, F. Tietz, D. Basu, and D. Stover, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2000, 83(8), p 2023-2028CrossRef
    15.N. Curry, W. Janikowski, Z. Pala, M. Vilemova, and N. Markocsan, Impact of Impurity Content on the Sintering Resistance and Phase Stability of Dysprosia- and Yttria-Stabilized Zirconia Thermal Barrier Coatings, J. Thermal Spray Technol., 2014, 23(1-2), p 160-169CrossRef
    16.G.J. Yang, Z.L. Chen, C.X. Li, and C.J. Li, Microstructural and Mechanical Property Evolutions of Plasma-Sprayed YSZ Coating During High-Temperature Exposure: Comparison Study Between 8YSZ and 20YSZ, J. Thermal Spray Technol., 2013, 22(8), p 1294-1302CrossRef
    17.T. Liu, X.T. Luo, X. Chen, G.J. Yang, C.X. Li, and C.J. Li, Morphology and Size Evolution of the Inter-Lamellar Two Dimensional Pores in Plasma Sprayed La2Zr2O7 Coatings During Thermal Exposure at 1300 °C, J. Thermal Spray Technol., 2015, 24(5), p 739-748CrossRef
    18.C.J. Li and W.Z. Wang, Quantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Ceramic Coatings Through Visualization of Void Distribution, Mater. Sci. Eng., A, 2004, 386, p 10-19CrossRef
    19.P. Patnaik, Handbook of inorganic chemicals, The McGraw-Hill Companies, New York, 2003, p 1125
    20.W.J. Parker, R. Jenkins, and C. Butler, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J. Appl. Phys., 1961, 32(9), p 1679-1684CrossRef
    21.K.A. Erk, C. Deschaseaux, and R.W. Trice, Grain-Boundary Grooving of Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 89(5), p 1673-1678CrossRef
  • 作者单位:Tao Liu (1)
    Shan-Lin Zhang (1)
    Xiao-Tao Luo (1)
    Guan-Jun Yang (1)
    Cheng-Xin Li (1)
    Chang-Jiu Li (1)

    1. State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049, Shaanxi, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Surfaces and Interfaces and Thin Films
    Tribology, Corrosion and Coatings
    Materials Science
    Characterization and Evaluation Materials
    Operating Procedures and Materials Treatment
    Analytical Chemistry
  • 出版者:Springer Boston
  • ISSN:1544-1016
文摘
Atmospheric plasma-sprayed ceramic coatings with a lamellar structure exhibit low thermal conductivity. However, high-temperature exposure causes sintering, which heals inter-lamellar two-dimensional (2D) pores and intra-splat pores. Such sintering effect increases the thermal conductivity of the coatings and consequently reduces the thermal insulation ability of TBCs. In this study, inter-lamellar 2D pores with a large opening width were introduced into the La2Zr2O7 (LZO) coating through the spraying of a LZO-SrO coating and the removal of the SrO splats in water. Then, the conventional LZO coating and the porous LZO coating were subjected to high-temperature exposure at 1300 °C, for different durations. It was found that the 2D pores resulting from SrO splats present little healing during high-temperature exposure, while the conventional 2D inter-lamellar pores with a small opening width heal rapidly. Thus, the thermal conductivity of the conventional LZO coating increased rapidly, while the unhealed 2D pores in the highly porous LZO coating contributed to the coating low thermal conductivity. The present results indicated that a high heat insulating thermal barrier coating with high stability can be fabricated though the introduction of inter-lamellar 2D pores with large opening width.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700