Theoretical and experimental studies of 1,5,7-triazabicyclo[4.4.0]dec-5-ene-catalyzed ring opening/ring closure reaction mechanism for 5-, 6- and 7-membered cyclic esters and carbonates
详细信息    查看全文
  • 作者:Ilya Nifant'ev ; Andrey Shlyakhtin…
  • 关键词:Ring ; opening polymerization ; Transesterification ; Esters ; Lactones ; Cyclic carbonates ; Lactide ; DFT
  • 刊名:Reaction Kinetics, Mechanisms and Catalysis
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:117
  • 期:2
  • 页码:447-476
  • 全文大小:1,947 KB
  • 参考文献:1.Nuyken O, Pask SD (2013) Polymers 5:361–403CrossRef
    2.Jérôme C, Lecomte P (2008) Adv Drug Del Rev 60:1056–1076CrossRef
    3.Li Y, Maciel D, Rodrigues J, Shi X, Tomás H (2015) Chem Rev 115:8564–8608CrossRef
    4.Penczek S, Cypryk M, Duda A, Kubisa P, Slomkowski S (2007) Prog Polym Sci 32:247–282CrossRef
    5.Slomkowski S (2007) Macromol Symp 253:47–58CrossRef
    6.Sarazin Y, Carpentier J-F (2015) Chem Rev 115:3564–3614CrossRef
    7.Xie H, Mou Z, Liu B, Li P, Rong W, Li S, Cui D (2014) Organometallics 33:722–730CrossRef
    8.Honrado M, Otero A, Fernández-Baeza J, Sánchez-Barba LF, Garcés A, Lara-Sánchez A, Martínez-Ferrer J, Sobrino S, Rodríguez AM (2015) Organometallics 34:3196–3208CrossRef
    9.Jaffredo CG, Carpentier J-F, Guillaume SM (2013) Macromolecules 46:6765–6776CrossRef
    10.Klitzke JS, Roisnel T, Kirillov E, Casagrande OL Jr, Carpentier J-F (2014) Organometallics 33:309–321CrossRef
    11.Klitzke JS, Roisnel T, Kirillov E, Casagrande OL Jr, Carpentier J-F (2014) Organometallics 33:5693–5707CrossRef
    12.Nifant’ev IE, Tavtorkin AN, Shlyahtin AV, Korchagina SA, Gavrilenko IF, Glebova NN, Churakov AV (2013) Dalton Trans 42:1223–1230CrossRef
    13.Maudoux N, Roisnel T, Carpentier J-F, Sarazin Y (2014) Organometallics 33:5740–5748CrossRef
    14.Carpentier J-F (2015) Organometallics 34:4175–4189CrossRef
    15.Diallo AK, Guerin W, Slawinski M, Brusson J-M, Carpentier J-F, Guillaume SM (2015) Macromolecules 48:3247–3256CrossRef
    16.Nederberg F, Connor EF, Möller M, Glauser Th, Hedrick JL (2001) Angew Chem Int Ed 40:2712–2715CrossRef
    17.Kamber NE, Lohmeijer BGG, Hedrick JL (2007) Chem Rev 107:5813–5840CrossRef
    18.Myers M, Connor EF, Glauser Th, Mock A, Nyce G, Hedrick JL (2002) J Polym Sci A 40:844–851CrossRef
    19.Csihony S, Culkin DA, Sentman AC, Dove AP, Waymouth RM, Hedrick JL (2005) J Am Chem Soc 127:9079–9084CrossRef
    20.Nyce GW, Glauser Th, Connor EF, Möck A, Waymouth RM, Hedrick JL (2003) J Am Chem Soc 125:3046–3056CrossRef
    21.Dove AP, Pratt RC, Lohmeijer BGG, Culkin DA, Hagberg EC, Nyce GW, Waymouth RM, Hedrick JL (2006) Polymer 47:4018–4025CrossRef
    22.Fevre M, Pinaud J, Gnanou Y, Vignolle J, Taton D (2013) Chem Soc Rev 42:2142–2172CrossRef
    23.Dove AP, Pratt RC, Lohmeijer BGG, Waymouth RM, Hedrick JL (2005) J Am Chem Soc 127:13798–13799CrossRef
    24.Dove AP, Li H, Pratt RC, Lohmeijer BGG, Culkin DA, Waymouth RM, Hedrick JL (2006) Chem Commun 27:2881–2883CrossRef
    25.Lohmeijer GG, Pratt RC, Leibfarth F, Logan JW, Long DA, Dove AP, Nederberg F, Choi J, Wade C, Waymouth RM, Hedrick JL (2006) Macromolecules 39:8574–8583CrossRef
    26.Pratt RC, Lohmeijer BGG, Long DA, Waymouth RM, Hedrick JL (2006) J Am Chem Soc 128:4556–4557CrossRef
    27.Jing F, Hillmyer MA (2008) J Am Chem Soc 130:13826–13827CrossRef
    28.Fiore GL, Jing F, Young VG Jr, Cramer CJ, Hillmyer MA (2010) Polym Chem 1:870–877CrossRef
    29.Bouyahyi M, Pepels MPF, Heise A, Duchateau R (2012) Macromolecules 45:3356–3366CrossRef
    30.Pascual A, Sardón H, Ruipérez F, Gracia R, Sudam P, Veloso A, Mecerreyes D (2015) J Polym Chem A 53:552–561CrossRef
    31.Martello MT, Burns A, Hillmyer M (2012) ACS Macro Lett 1:131–135CrossRef
    32.Kim H, Olsson JV, Hedrick JL, Waymouth RM (2012) ACS Macro Lett 1:845–847CrossRef
    33.Nederberg F, Lohmeijer BGG, Leibfarth F, Pratt RC, Choi J, Dove AP, Waymouth RM, Hedrick JL (2007) Biomacromolecules 8:153–160CrossRef
    34.Chuma A, Horn HW, Swope WC, Pratt RC, Zhang L, Lohmeijer BGG, Wade CG, Waymouth RM, Hedrick JL, Rice JE (2008) J Am Chem Soc 130:6749–6754CrossRef
    35.Simón L, Goodman JM (2007) J Org Chem 72:9656–9662CrossRef
    36.Cheong PHY, Legault CY, Um JM, Celebi-Olcum N, Houk KN (2011) Chem Rev 111:5042–5137CrossRef
    37.Guerin W, Helou M, Slawinski M, Brusson J-M, Carpentier J-F, Guillaume SM (2015) Polym Chem 6:1972–1985 and references therein CrossRef
    38.Guerin W, Diallo AK, Kirilov E, Helou M, Slawinski M, Brusson J-M, Carpentier J-F, Guillaume SM (2014) Macromolecules 47:4230–4235 and references therein CrossRef
    39.Laikov N (1997) Chem Phys Lett 281:151–156CrossRef
    40.Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRef
    41.Becke D (1993) J Chem Phys 98:1372–1377CrossRef
    42.Becke D (1993) J Chem Phys 98:5648–5652CrossRef
    43.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision A1. Gaussian Inc, Pittsburgh
    44.Suriano F, Coulembier O, Hedrick JL, Dubois P (2011) Polym Chem 2:528–533CrossRef
    45.Olsén P, Odelius K, Keul H, Albertsson A-C (2015) Macromolecules 48:1703–1710CrossRef
    46.Bartolini C, Mespouille L, Verbruggen I, Willem R, Dubois P (2011) Soft Matter 7:9628–9637CrossRef
    47.Mindemark J, Hilborn J, Bowden T (2007) Macromolecules 40:3515–3517CrossRef
    48.Ishikawa T (2009) Superbases for organic synthesis: guanidines, amidines, phosphazenes and related organocatalysts. Wiley, HobokenCrossRef
    49.del Rosal I, Brignou P, Guillaume SM, Carpentier J-F, Maron L (2015) Polym Chem 6:3336–3352CrossRef
    50.Jaffredo G, Carpentier J-F, Guillaume SM (2012) Macromol Rapid Commun 33:1938–1944CrossRef
    51.Yang K-K, Wang X-L, Wang Y-Z (2002) Polym Rev 42:373–398
    52.Zeng T, Wang Y, Shen Q, Yao Y, Luo Y, Cui D (2014) Organometallics 33:6803–6811CrossRef
    53.Libiszowski Y, Kowalski A, Szymanski R, Duda A, Raquez J-M, Degee P, Dubois P (2004) Macromolecules 37:52–59CrossRef
    54.Panja S, Nayak S, Ghosh SK, Selvakumar M, Chattopadhyay S (2014) RSC Adv 4:51766–51775CrossRef
    55.Plichta A, Florjańczyk Z, Kundys A, Frydrych A, Dębowski M, Langwald N (2014) Pure Appl Chem 86:733–745CrossRef
    56.Carpentier J-F, Guillaume S, Guerin W (2013) Patent Appl. WO2013/186313 A1
    57.Yan M, Yang H, Xing X (2013) Polym Bull 70:467–478CrossRef
    58.Nicponski RT (2014) Tetrahedron Lett 55:2075–2077CrossRef
    59.Canan Koch SS, Chamberlin AR (1989) Synth Commun 19:829–833CrossRef
    60.Ariga T, Takata T, Endo T (1993) J Polym Sci A 31:581–584CrossRef
    61.Sugawara T, Irie K, Iwasawa H, Yoshikawa T, Okuno S, Watanabe HK, Kato T, Shibukawa M, Ito Y (1992) Carbohydr Res 230:117–149CrossRef
    62.Liu Y, Xiao Q, Liu Y, Li Z, Qiu Y, Zhou G-B, Yao Z-J, Jiang S (2014) Eur J Med Chem 78:248–258CrossRef
    63.Usachev S, Gridnev A (2011) Synth Commun 41:3683–3688CrossRef
    64.Belenkaya BG, Polyakov DK, Filatova VN, Sakharova VI, A Adamov A, Gogleva OV, Nesterova RG (1991) Patent SU1700001 A1
  • 作者单位:Ilya Nifant’ev (1)
    Andrey Shlyakhtin (1)
    Vladimir Bagrov (2)
    Boris Lozhkin (2)
    Gladis Zakirova (2)
    Pavel Ivchenko (1)
    Olga Legon’kova (3)

    1. A.V.Topchiev Institute of Petrochemical Synthesis, RAS, Leninsky prosp., 29, Moscow, Russian Federation, 119991
    2. Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, Russian Federation, 119991
    3. A.V. Vishnevsky Institute of Surgery, Bol’shaya Serpuhovskaya str., 27, Moscow, Russian Federation, 117997
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Industrial Chemistry and Chemical Engineering
    Physical Chemistry
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1878-5204
文摘
The ring-opening polymerizations (ROP) of five-, six-, and seven-membered ring cyclic substrates, as well as the transesterification of acyclic esters, with 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a catalyst precursor in the presence of methanol as an initiator were investigated using density functional theory calculations at the B3LYP/6–311G(d) level of theory. The calculated energy barriers for the ROP are in the range from 12.5 to 21.5 kcal/mol. By analyzing the energy profiles, the overall polymerization process can be classified into exergonic for trimethylene carbonate, tetramethylene carbonate, caprolactone and 1,4-dioxane-2,5-dione, almost athermic for valerolactone, energetically unfavorable for 1,4-dioxanone, and thermodynamically forbidden for ethylene carbonate and gamma-butyrolactone. The study of the kinetics of ROP of cyclic substrates and transesterification of acyclic esters using the TBD—benzyl alcohol catalyst demonstrated that the experimentally determined rate constants for the reactions of cyclic substrates are qualitatively correlated with the calculated activation barriers. It was also experimentally found that TBD efficiently catalyzes the irreversible cyclization to give ethylene carbonate and gamma-butyrolactone, the catalyst productivity being 2–3 orders of magnitude higher than that of conventional basic catalysts. The obtained results confirm that the donor–acceptor mechanism is common for different ester-type substrates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700