Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates
详细信息    查看全文
  • 作者:Hiroshi Yajima (29)
    Makoto Suzuki (30)
    Haruki Ochi (31)
    Keiko Ikeda (29)
    Shigeru Sato (29)
    Ken-ichi Yamamura (32)
    Hajime Ogino (33)
    Naoto Ueno (30)
    Kiyoshi Kawakami (29)

    29. Division of Biology
    ; Center for Molecular Medicine ; Jichi Medical University ; 3311-1 Yakushiji ; Shimotsuke ; Tochigi ; 329-0498 ; Japan
    30. Division of Morphogenesis
    ; Department of Developmental Biology ; National Institute for Basic Biology ; 38 Nishigonaka ; Myodaiji ; Okazaki ; Aichi ; 444-8585 ; Japan
    31. Faculty of Medicine
    ; Yamagata University ; 2-2-2 Iida-Nishi ; Yamagata ; 990-9585 ; Japan
    32. Division of Developmental Genetics
    ; Center for Animal Resources and Development ; Institute of Resource Development and Analysis ; Kumamoto University ; 2-2-1 Honjo ; Kumamoto ; 860-0811 ; Japan
    33. Department of Animal Bioscience
    ; Nagahama Institute of Bio-Science and Technology ; 1266 Tamura ; Nagahama ; Shiga ; 526-0829 ; Japan
  • 关键词:Dorsal root ganglia ; Enhancer ; Evolution ; Neural crest cell ; Rohon ; Beard cell ; Sensory neuron ; Six genes
  • 刊名:BMC Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:12
  • 期:1
  • 全文大小:8,250 KB
  • 参考文献:1. Beard, J (1889) On the early development of Lepidosteus osseus - preliminary notice. Proc R Soc Lond 46: pp. 108-118 CrossRef
    2. Bernhardt, RR, Chitnis, AB, Lindamer, L, Kuwada, JY (1990) Identification of spinal neurons in the embryonic and larval zebrafish. J Comp Neurol 302: pp. 603-616 CrossRef
    3. Coghill, GE (1914) Correlated anatomical and physiological studies on the growth of the nervous system of Amphibia. 1. The afferent system of the trunk of Amblystoma. J Comp Neurol 24: pp. 161-233 CrossRef
    4. Hughes, A (1957) The development of the primary sensory system in Xenopus laevis (Daudin). J Anat 91: pp. 323-338
    5. Eccles, JC, Schad茅, JP (1964) Organization of the Spinal Cord. Elsevier, Amsterdam
    6. Ari毛ns Kappers, CU, Huber, GC, Crosby, EC (1967) The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. Hafner, New York
    7. Fritzsch, B, Northcutt, RG (1993) Cranial and spinal nerve organization in amphioxus and lampreys: evidence for an ancestral craniate pattern. Acta Anat (Basel) 148: pp. 96-109 CrossRef
    8. Hartenstein, V (1993) Early pattern of neuronal differentiation in the Xenopus embryonic brainstem and spinal cord. J Comp Neurol 328: pp. 213-231 CrossRef
    9. Lamborghini, JE (1987) Disappearance of Rohon-Beard neurons from the spinal cord of larval Xenopus laevis. J Comp Neurol 264: pp. 47-55 CrossRef
    10. Bone, Q (1959) The central nervous system in larval acraniates. Q J Microsc Sci 100: pp. 509-527
    11. Lacalli, TC, Kelly, SJ (2003) Sensory pathways in amphioxus larvae II. Dorsal tracts and translumenal cells. Acta Zool-Stockholm 84: pp. 1-13 CrossRef
    12. Bone, Q (1960) The central nervous system in amphioxus. J Comp Neurol 115: pp. 27-64 CrossRef
    13. Johnston, JB (1905) The cranial and spinal ganglia and the viscero-motor roots in amphioxus. Biol Bull 9: pp. 112-127 CrossRef
    14. Whiting, HP (1948) Nervous structure of the spinal cord of the young larval brook-lamprey. Q J Microsc Sci 89: pp. 359-383
    15. Nakao, T, Ishizawa, A (1987) Development of the spinal nerves in the lamprey: I. Rohon-Beard cells and interneurons. J Comp Neurol 256: pp. 342-355 CrossRef
    16. Beard, J (1892) The transient ganglion cells and their nerves in Raja batis. Anat Anzeiger 7: pp. 191-206
    17. Kuratani, S, Horigome, N (2000) Developmental morphology of branchiomeric nerves in a cat shark, Scyliorhinus torazame, with special reference to rhombomeres, cephalic mesoderm, and distribution patterns of cephalic crest cells. Zool Sci 17: pp. 893-909 CrossRef
    18. Kuwada, JY, Bernhardt, RR, Nguyen, N (1990) Development of spinal neurons and tracts in the zebrafish embryo. J Comp Neurol 302: pp. 617-628 CrossRef
    19. Eichler, VB, Porter, RA (1981) Rohon-Beard cells in frog development: a study of temporal and spatial changes in a transient cell population. J Comp Neurol 203: pp. 121-130 CrossRef
    20. Forehand, CJ, Farel, PB (1982) Spinal cord development in anuran larvae: I. Primary and secondary neurons. J Comp Neurol 209: pp. 386-394 CrossRef
    21. Kollros, JJ, Bovbjerg, AM (1997) Growth and death of Rohon-Beard cells in Rana pipiens and Ceratophrys ornata. J Morphol 232: pp. 67-78 CrossRef
    22. Schlosser, G, Roth, G (1997) Evolution of nerve development in frogs. II. Modified development of the peripheral nervous system in the direct-developing frog Eleutherodactylus coqui (Leptodactylidae). Brain Behav Evol 50: pp. 94-128 CrossRef
    23. Rossi, CC, Hernandez-Lagunas, L, Zhang, C, Choi, IF, Kwok, L, Klymkowsky, M, Artinger, KB (2008) Rohon-Beard sensory neurons are induced by BMP4 expressing non-neural ectoderm in Xenopus laevis. Dev Biol 314: pp. 351-361 CrossRef
    24. Cornell, RA, Eisen, JS (2000) Delta signaling mediates segregation of neural crest and spinal sensory neurons from zebrafish lateral neural plate. Development 127: pp. 2873-2882
    25. Cornell, RA, Eisen, JS (2002) Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function. Development 129: pp. 2639-2648
    26. Theveneau, E, Mayor, R (2012) Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 366: pp. 34-54 CrossRef
    27. Davidson, LA, Keller, RE (1999) Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension. Development 126: pp. 4547-4556
    28. Rossi, CC, Kaji, T, Artinger, KB (2009) Transcriptional control of Rohon-Beard sensory neuron development at the neural plate border. Dev Dyn 238: pp. 931-943 CrossRef
    29. Tanaka, H, Morimura, R, Ohshima, T (2012) Dpysl2 (CRMP2) and Dpysl3 (CRMP4) phosphorylation by Cdk5 and DYRK2 is required for proper positioning of Rohon-Beard neurons and neural crest cells during neurulation in zebrafish. Dev Biol 370: pp. 223-236 CrossRef
    30. Metcalfe, WK, Myers, PZ, Trevarrow, B, Bass, MB, Kimmel, CB (1990) Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development 110: pp. 491-504
    31. Ribera, AB, Nusslein-Volhard, C (1998) Zebrafish touch-insensitive mutants reveal an essential role for the developmental regulation of sodium current. J Neurosci 18: pp. 9181-9191
    32. Williams, JA, Barrios, A, Gatchalian, C, Rubin, L, Wilson, SW, Holder, N (2000) Programmed cell death in zebrafish rohon beard neurons is influenced by TrkC1/NT-3 signaling. Dev Biol 226: pp. 220-230 CrossRef
    33. Klymkowsky, MW, Rossi, CC, Artinger, KB (2010) Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis. Cell Adh Migr 4: pp. 595-608 CrossRef
    34. Bricaud, O, Collazo, A (2006) The transcription factor six1 inhibits neuronal and promotes hair cell fate in the developing zebrafish (Danio rerio) inner ear. J Neurosci 26: pp. 10438-10451 CrossRef
    35. Bricaud, O, Collazo, A (2011) Balancing cell numbers during organogenesis: Six1a differentially affects neurons and sensory hair cells in the inner ear. Dev Biol 357: pp. 191-201 CrossRef
    36. Schlosser, G, Awtry, T, Brugmann, SA, Jensen, ED, Neilson, K, Ruan, G, Stammler, A, Voelker, D, Yan, B, Zhang, C, Klymkowsky, MW, Moody, SA (2008) Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion. Dev Biol 320: pp. 199-214 CrossRef
    37. Brugmann, SA, Pandur, PD, Kenyon, KL, Pignoni, F, Moody, SA (2004) Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development 131: pp. 5871-5881 CrossRef
    38. Ikeda, K, Kageyama, R, Suzuki, Y, Kawakami, K (2010) Six1 is indispensable for production of functional progenitor cells during olfactory epithelial development. Int J Dev Biol 54: pp. 1453-1464 CrossRef
    39. Ikeda, K, Ookawara, S, Sato, S, Ando, Z, Kageyama, R, Kawakami, K (2007) Six1 is essential for early neurogenesis in the development of olfactory epithelium. Dev Biol 311: pp. 53-68 CrossRef
    40. Laclef, C, Souil, E, Demignon, J, Maire, P (2003) Thymus, kidney and craniofacial abnormalities in Six 1 deficient mice. Mech Dev 120: pp. 669-679 CrossRef
    41. Ozaki, H, Nakamura, K, Funahashi, J, Ikeda, K, Yamada, G, Tokano, H, Okamura, HO, Kitamura, K, Muto, S, Kotaki, H, Sudo, K, Horai, R, Iwakura, Y, Kawakami, K (2004) Six1 controls patterning of the mouse otic vesicle. Development 131: pp. 551-562 CrossRef
    42. Zheng, W, Huang, L, Wei, ZB, Silvius, D, Tang, B, Xu, PX (2003) The role of Six1 in mammalian auditory system development. Development 130: pp. 3989-4000 CrossRef
    43. Zou, D, Silvius, D, Fritzsch, B, Xu, PX (2004) Eya1 and Six1 are essential for early steps of sensory neurogenesis in mammalian cranial placodes. Development 131: pp. 5561-5572 CrossRef
    44. Ito, T, Noguchi, Y, Yashima, T, Kitamura, K (2006) SIX1 mutation associated with enlargement of the vestibular aqueduct in a patient with branchio-oto syndrome. Laryngoscope 116: pp. 796-799 CrossRef
    45. Ruf, RG, Xu, PX, Silvius, D, Otto, EA, Beekmann, F, Muerb, UT, Kumar, S, Neuhaus, TJ, Kemper, MJ, Raymond, RM, Brophy, PD, Berkman, J, Gattas, M, Hyland, V, Ruf, EM, Schwartz, C, Chang, EH, Smith, RJ, Stratakis, CA, Weil, D, Petit, C, Hildebrandt, F (2004) SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci U S A 101: pp. 8090-8095 CrossRef
    46. Kochhar, A, Orten, DJ, Sorensen, JL, Fischer, SM, Cremers, CW, Kimberling, WJ, Smith, RJ (2008) SIX1 mutation screening in 247 branchio-oto-renal syndrome families: a recurrent missense mutation associated with BOR. Hum Mutat 29: pp. 565 CrossRef
    47. Kobayashi, H, Kawakami, K, Asashima, M, Nishinakamura, R (2007) Six1 and Six4 are essential for Gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects. Mech Dev 124: pp. 290-303 CrossRef
    48. Konishi, Y, Ikeda, K, Iwakura, Y, Kawakami, K (2006) Six1 and Six4 promote survival of sensory neurons during early trigeminal gangliogenesis. Brain Res 1116: pp. 93-102 CrossRef
    49. Zou, D, Silvius, D, Davenport, J, Grifone, R, Maire, P, Xu, PX (2006) Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1. Dev Biol 293: pp. 499-512 CrossRef
    50. Ozaki, H, Watanabe, Y, Takahashi, K, Kitamura, K, Tanaka, A, Urase, K, Momoi, T, Sudo, K, Sakagami, J, Asano, M, Iwakura, Y, Kawakami, K (2001) Six4, a putative myogenin gene regulator, is not essential for mouse embryonal development. Mol Cell Biol 21: pp. 3343-3350 CrossRef
    51. Korzh, V, Edlund, T, Thor, S (1993) Zebrafish primary neurons initiate expression of the LIM homeodomain protein Isl-1 at the end of gastrulation. Development 118: pp. 417-425
    52. Inoue, A, Takahashi, M, Hatta, K, Hotta, Y, Okamoto, H (1994) Developmental regulation of islet-1 mRNA expression during neuronal differentiation in embryonic zebrafish. Dev Dyn 199: pp. 1-11 CrossRef
    53. Kolm, PJ, Sive, HL (1995) Efficient hormone-inducible protein function in Xenopus laevis. Dev Biol 171: pp. 267-272 CrossRef
    54. Jacobson, M (1981) Rohon-Beard neuron origin from blastomeres of the 16-cell frog embryo. J Neurosci 1: pp. 918-922
    55. Lamborghini, JE (1980) Rohon-beard cells and other large neurons in Xenopus embryos originate during gastrulation. J Comp Neurol 189: pp. 323-333 CrossRef
    56. Patterson, KD, Krieg, PA (1999) Hox11-family genes XHox11 and XHox11L2 in Xenopus: XHox11L2 expression is restricted to a subset of the primary sensory neurons. Dev Dyn 214: pp. 34-43 CrossRef
    57. Suzuki, Y, Ikeda, K, Kawakami, K (2010) Expression of Six1 and Six4 in mouse taste buds. J Mol Histol 41: pp. 205-214 CrossRef
    58. Ando, Z, Sato, S, Ikeda, K, Kawakami, K (2005) Slc12a2 is a direct target of two closely related homeobox proteins, Six1 and Six4. FEBS J 272: pp. 3026-3041 CrossRef
    59. Ozaki, S, Snider, WD (1997) Initial trajectories of sensory axons toward laminar targets in the developing mouse spinal cord. J Comp Neurol 380: pp. 215-229 CrossRef
    60. Mu, X, Silos-Santiago, I, Carroll, SL, Snider, WD (1993) Neurotrophin receptor genes are expressed in distinct patterns in developing dorsal root ganglia. J Neurosci 13: pp. 4029-4041
    61. Sharma, K, Sheng, HZ, Lettieri, K, Li, H, Karavanov, A, Potter, S, Westphal, H, Pfaff, SL (1998) LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95: pp. 817-828 CrossRef
    62. Muller, T, Anlag, K, Wildner, H, Britsch, S, Treier, M, Birchmeier, C (2005) The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord. Genes Dev 19: pp. 733-743 CrossRef
    63. Ribera, AB, Nguyen, DA (1993) Primary sensory neurons express a Shaker-like potassium channel gene. J Neurosci 13: pp. 4988-4996
    64. Park, BY, Hong, CS, Weaver, JR, Rosocha, EM, Saint-Jeannet, JP (2012) Xaml1/Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus. Dev Biol 362: pp. 65-75 CrossRef
    65. Park, BY, Saint-Jeannet, JP (2010) Expression analysis of Runx3 and other Runx family members during Xenopus development. Gene Expr Patterns 10: pp. 159-166 CrossRef
    66. Heathcote, RD, Chen, A (1993) A nonrandom interneuronal pattern in the developing frog spinal cord. J Comp Neurol 328: pp. 437-448 CrossRef
    67. Yamauchi, Y, Abe, K, Mantani, A, Hitoshi, Y, Suzuki, M, Osuzu, F, Kuratani, S, Yamamura, K (1999) A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice. Dev Biol 212: pp. 191-203 CrossRef
    68. Niederlander, C, Lumsden, A (1996) Late emigrating neural crest cells migrate specifically to the exit points of cranial branchiomotor nerves. Development 122: pp. 2367-2374
    69. Vermeren, M, Maro, GS, Bron, R, McGonnell, IM, Charnay, P, Topilko, P, Cohen, J (2003) Integrity of developing spinal motor columns is regulated by neural crest derivatives at motor exit points. Neuron 37: pp. 403-415 CrossRef
    70. Maro, GS, Vermeren, M, Voiculescu, O, Melton, L, Cohen, J, Charnay, P, Topilko, P (2004) Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat Neurosci 7: pp. 930-938 CrossRef
    71. Coulpier, F, Decker, L, Funalot, B, Vallat, JM, Garcia-Bragado, F, Charnay, P, Topilko, P (2010) CNS/PNS boundary transgression by central glia in the absence of Schwann cells or Krox20/Egr2 function. J Neurosci 30: pp. 5958-5967 CrossRef
    72. Schneider-Maunoury, S, Topilko, P, Seitandou, T, Levi, G, Cohen-Tannoudji, M, Pournin, S, Babinet, C, Charnay, P (1993) Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75: pp. 1199-1214 CrossRef
    73. Golding, JP, Cohen, J (1997) Border controls at the mammalian spinal cord: late-surviving neural crest boundary cap cells at dorsal root entry sites may regulate sensory afferent ingrowth and entry zone morphogenesis. Mol Cell Neurosci 9: pp. 381-396 CrossRef
    74. Sato, S, Ikeda, K, Shioi, G, Nakao, K, Yajima, H, Kawakami, K (2012) Regulation of Six1 expression by evolutionarily conserved enhancers in tetrapods. Dev Biol 368: pp. 95-108 CrossRef
    75. Ogino, H, Fisher, M, Grainger, RM (2008) Convergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification. Development 135: pp. 249-258 CrossRef
    76. Kanungo, J, Li, BS, Zheng, Y, Pant, HC (2006) Cyclin-dependent kinase 5 influences Rohon-Beard neuron survival in zebrafish. J Neurochem 99: pp. 251-259 CrossRef
    77. Humphrey, T (1944) Primitive neurons in the embryonic human central nervous system. J Comp Neurol 81: pp. 1-45 CrossRef
    78. Youngstrom, KA (1944) Intramedullary sensory type ganglion cells in the spinal cord of human embryos. J Comp Neurol 81: pp. 47-53 CrossRef
    79. Donoghue, PC, Graham, A, Kelsh, RN (2008) The origin and evolution of the neural crest. Bioessays 30: pp. 530-541 CrossRef
    80. Chen, CL, Broom, DC, Liu, Y, de Nooij, JC, Li, Z, Cen, C, Samad, OA, Jessell, TM, Woolf, CJ, Ma, Q (2006) Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 49: pp. 365-377 CrossRef
    81. Gammill, LS, Roffers-Agarwal, J (2010) Division of labor during trunk neural crest development. Dev Biol 344: pp. 555-565 CrossRef
    82. Kuriyama, S, Mayor, R (2008) Molecular analysis of neural crest migration. Philos Trans R Soc Lond B Biol Sci 363: pp. 1349-1362 CrossRef
    83. Kawasaki, T, Bekku, Y, Suto, F, Kitsukawa, T, Taniguchi, M, Nagatsu, I, Nagatsu, T, Itoh, K, Yagi, T, Fujisawa, H (2002) Requirement of neuropilin 1-mediated Sema3A signals in patterning of the sympathetic nervous system. Development 129: pp. 671-680
    84. Gammill, LS, Gonzalez, C, Gu, C, Bronner-Fraser, M (2006) Guidance of trunk neural crest migration requires neuropilin 2/semaphorin 3F signaling. Development 133: pp. 99-106 CrossRef
    85. Roffers-Agarwal, J, Gammill, LS (2009) Neuropilin receptors guide distinct phases of sensory and motor neuronal segmentation. Development 136: pp. 1879-1888 CrossRef
    86. Koestner, U, Shnitsar, I, Linnemannstons, K, Hufton, AL, Borchers, A (2008) Semaphorin and neuropilin expression during early morphogenesis of Xenopus laevis. Dev Dyn 237: pp. 3853-3863 CrossRef
    87. Kozmik, Z, Holland, ND, Kreslova, J, Oliveri, D, Schubert, M, Jonasova, K, Holland, LZ, Pestarino, M, Benes, V, Candiani, S (2007) Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev Biol 306: pp. 143-159 CrossRef
    88. Carroll, SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134: pp. 25-36 CrossRef
    89. Koshiba-Takeuchi, K, Mori, AD, Kaynak, BL, Cebra-Thomas, J, Sukonnik, T, Georges, RO, Latham, S, Beck, L, Henkelman, RM, Black, BL, Olson, EN, Wade, J, Takeuchi, JK, Nemer, M, Gilbert, SF, Bruneau, BG (2009) Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature 461: pp. 95-98 CrossRef
    90. Shim, S, Kwan, KY, Li, M, Lefebvre, V, Sestan, N (2012) Cis-regulatory control of corticospinal system development and evolution. Nature 486: pp. 74-79
    91. Freitas, R, Gomez-Marin, C, Wilson, JM, Casares, F, Gomez-Skarmeta, JL (2012) Hoxd13 contribution to the evolution of vertebrate appendages. Dev Cell 23: pp. 1219-1229 CrossRef
    92. Sive, HL, Grainger, RM, Harland, RM (2000) Early Development of Xenopus laevis. Cold Spring Harbor Laboratory Press, New York
    93. Nieuwkoop, PD, Faber, J (1967) Normal Table of Xenopus laevis (Daudin). North-Holland Publishing Company, Amsterdam
    94. Suzuki, M, Hara, Y, Takagi, C, Yamamoto, TS, Ueno, N (2010) MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. Development 137: pp. 2329-2339 CrossRef
    95. Takahashi, M, Osumi, N (2006) Live Imaging of neuroepithelial cells in the rat spinal cord by confocal laser-scanning microscopy. Bionanotechnology Based Future Medical Engineering Proceedings of the Final Symposium of the Tohoku University 21st Century Center of Excellence Program. Imperial College Press, London, pp. 211-220 CrossRef
  • 刊物主题:Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1741-7007
文摘
Background Various senses and sensory nerve architectures of animals have evolved during adaptation to exploit diverse environments. In craniates, the trunk sensory system has evolved from simple mechanosensory neurons inside the spinal cord (intramedullary), called Rohon-Beard (RB) cells, to multimodal sensory neurons of dorsal root ganglia (DRG) outside the spinal cord (extramedullary). The fish and amphibian trunk sensory systems switch from RB cells to DRG during development, while amniotes rely exclusively on the DRG system. The mechanisms underlying the ontogenic switching and its link to phylogenetic transition remain unknown. Results In Xenopus, Six1 overexpression promoted precocious apoptosis of RB cells and emergence of extramedullary sensory neurons, whereas Six1 knockdown delayed the reduction in RB cell number. Genetic ablation of Six1 and Six4 in mice led to the appearance of intramedullary sensory neuron-like cells as a result of medial migration of neural crest cells into the spinal cord and production of immature DRG neurons and fused DRG. Restoration of SIX1 expression in the neural crest-linage partially rescued the phenotype, indicating the cell autonomous requirements of SIX1 for normal extramedullary sensory neurogenesis. Mouse Six1 enhancer that mediates the expression in DRG neurons activated transcription in Xenopus RB cells earlier than endogenous six1 expression, suggesting earlier onset of mouse SIX1 expression than Xenopus during sensory development. Conclusions The results indicated the critical role of Six1 in transition of RB cells to DRG neurons during Xenopus development and establishment of exclusive DRG system of mice. The study provided evidence that early appearance of SIX1 expression, which correlated with mouse Six1 enhancer, is essential for the formation of DRG-dominant system in mice, suggesting that heterochronic changes in Six1 enhancer sequence play an important role in alteration of trunk sensory architecture and contribute to the evolution of the trunk sensory system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700