Temporal Variability and Potential Diffusion Characteristics of Dust Aerosol Originating from the Aral Sea Basin, Central Asia
详细信息    查看全文
  • 作者:Yongxiao Ge ; Jilili Abuduwaili ; Long Ma ; Dongwei Liu
  • 关键词:Potential diffusion ; Aerosol ; Dust storms ; Central Asia ; Aral Sea
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:227
  • 期:2
  • 全文大小:13,980 KB
  • 参考文献:Abuduwaili, J., & Mu, G. J. (2006). Eolian factor in the process of modern salt accumulation in western Dzungaria, China. Eurasian Soil Science, 39(4), 367–376.CrossRef
    Abuduwaili, J., Liu, D. W., & Wu, G. Y. (2010). Saline dust storms and their ecological impacts in arid regions. Journal of Arid Land, 2(2), 144–150.CrossRef
    Abuduwailli, J., Gabchenko, M. V., & Xu, J. R. (2008). Eolian transport of salts—a case study in the area of Lake Ebinur (Xinjiang, Northwest China). Journal of Arid Environments, 72(10), 1843–1852.CrossRef
    Baddock, M. C., Bullard, J. E., & Bryant, R. G. (2009). Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sensing of Environment, 113(7), 1511–1528.CrossRef
    Bai, J., Chen, X., Li, J., Yang, L., & Fang, H. (2011). Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environmental Monitoring and Assessment, 178(1–4), 247–256.CrossRef
    Baidya Roy, S., Smith, M., Morris, L., Volis, S., Orlovsky, N., & Khalilov, A. (2013). Impact of the desiccation of the aral sea on local and regional climate. Proccedings of EGU General Assembly Conference Abstracts, 15, 6609.
    Bond, A. R., Micklin, P. P., & Sagers, M. J. (1992). Lake Balkhash dwindling, becoming increasingly saline. Post-Soviet Geography, 33(2), 131–134.
    Breckle, S. W., Wucherer, W., & Dimeyeva, L. A. (2011). Vegetation of the Aralkum. In: Breckle, S. W., Wucherer, W., Dimeyeva, L. A. & Ogar, N. P. (Eds), Aralkum-a Man-Made Desert: The Desiccated Floor of the Aral Sea (Central Asia) (pp.127-159). Ecological Studies. Springer, Berlin.
    Bugayev, V. A., Giorgio, V. A., Kozik, E. M., Petrosyants, M. A., Pshenitshnij, A. Y., Romanov, N. N., & Chernysheva, O. N. (1957). Synoptic processes of Central Asia. Publishing Company of the Academy of Sciences of the Uzbek Soviet Republic: Tashkent (in Russian).
    Chen, X., Jiang, F., Wang, Y., Li, Y., & Hu, R. (2013). Characteristics of the eco-geographical pattern in arid land of central Asia. Arid Zone Research, 30(3), 385–390.
    Cretaux, J., Letolle, R., & Bergé-Nguyen, M. (2013). History of Aral Sea level variability and current scientific debates. Global and Planetary Change, 110, 99–113.CrossRef
    Dorling, S., Davies, T., & Pierce, C. (1992). Cluster analysis: a technique for estimating the synoptic meteorological controls on air and precipitation chemistry—method and applications. Atmospheric Environment. Part A. General Topics, 26(14), 2575–2581.CrossRef
    Draxler, R. R., & Hess, G. (1998). An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Australian Meteorological Magazine, 47(4), 295–308.
    Draxler, R. R., & Rolph, G. D. (2003). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring, Maryland. http://​www.​arl.​noaa.​gov/​ready/​hysplit4.​html .
    Draxler, R. R., Stunder, B., Rolph, G., & Taylor, A. (1999). HYSPLIT4 user’s guide. NOAA Technical Memorandum ERL ARL, 230, 35.
    Drejer, A. & Shamenkova, G. (1963). Waves and wind regime of the Aral Sea. GUGMS SM SSSR, GOIN, UGMS Uz. SSR, Moscow-Tashkent (in Russian).
    Engelstaedter, S., Tegen, I., & Washington, R. (2006). North African dust emissions and transport. Earth-Science Reviews, 79(1), 73–100.CrossRef
    Gautam, R., Hsu, N., Lau, K. M., Tsay, S. C., & Kafatos, M. (2009). Enhanced pre‐monsoon warming over the Himalayan‐Gangetic region from 1979 to 2007. Geophysical Research Letters, 36, L07704. doi:10.​1029/​2009GL037641 .
    Goudie, A., & Middleton, N. J. (2006). Desert dust in the global system. Springer, Heidelberg.
    Guo, L., Xia, Z., & Wang, Z. (2012). Comparisons of hydrological variations and environmental effects between Aral Sea and Lake Balkhash. Journal of Desert Research, 32(1), 198–203.
    Harris, J. M., & Kahl, J. D. (1990). A descriptive atmospheric transport climatology for the Mauna Loa Observatory, using clustered trajectories. Journal of Geophysical Research: Atmospheres (1984–2012), 95(D9), 13651–13667.CrossRef
    Hsu, N. C., Herman, J., Torres, O., Holben, B., Tanre, D., Eck, T., Smirnov, A., Chatenet, B., & Lavenu, F. (1999). Comparisons of the TOMS aerosol index with Sun‐photometer aerosol optical thickness: results and applications. Journal of Geophysical Research: Atmospheres (1984–2012), 104(D6), 6269–6279.CrossRef
    Hu, R., Jiang, F., & Wang, Y. (2007). Study on the lakes in arid areas of central Asia. Arid Zone Research, 22(4), 424–430.
    Indoitu, R., Orlovsky, L., & Orlovsky, N. (2012). Dust storms in central Asia: spatial and temporal variations. Journal of Arid Environment, 85, 62–70.CrossRef
    Indoitu, R., Kozhoridze, G., Batyrbaeva, M., Vitkovskaya, I., Orlovsky, N., Blumberg, D., & Orlovsky, L. (2015). Dust emission and environmental changes in the dried bottom of the Aral Sea. Aeolian Research, 17, 101–115.CrossRef
    Issanova, G., Abuduwaili, J., & Semenov, O. (2014). Deflation processes and their role in desertification of the southern pre-Balkhash deserts. Arabian Journal of Geosciences, 7(11), 4513–4521.
    Issanova, G., Abuduwaili, J., Galayeva, O., Semenov, O., & Bazarbayeva, T. (2015). Aeolian transportation of sand and dust in the Aral Sea region. International Journal of Environmental Science and Technology, 12(10), 3213–3224.
    Jensen, S., Mazhitova, Z., & Zetterström, R. (1997). Environmental pollution and child health in the Aral Sea region in Kazakhstan. Science of the Total Environment, 206(2), 187–193.CrossRef
    Kaskaoutis, D., Rashki, A., Houssos, E., Mofidi, A., Goto, D., Bartzokas, A., Francois, P., & Legrand, M. (2014). Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran. Climate Dynamics, 45(1–2), 407–424.
    Kaskaoutis, D., Rashki, A., Francois, P., Dumka, U., Houssos, E., & Legrand, M. (2015). Meteorological regimes modulating dust outbreaks in southwest Asia: the role of pressure anomaly and Inter-Tropical Convergence Zone on the 1–3 July 2014 case. Aeolian Research, 18, 83–97.CrossRef
    Kuzmina, Z. V., & Novikova, N. (2008). Monitoring of the vegetation in conditions of the Aral Sea ecological crisis (pp. 29–39). Moscow: Russian Academy of Sciences, Water Problems Institute.
    Létolle, R. & Mainguet, M. (1993). Aral. (pp. 357). Springer, Paris.
    Levelt, P. F., van den Oord, G. H., Dobber, M. R., Malkki, A., Visser, H., de Vries, J., Stammes, P., Lundell, J. O., & Saari, H. (2006). The ozone monitoring instrument. Geoscience and Remote Sensing, IEEE Transactions on, 44(5), 1093–1101.CrossRef
    Liu, P., Zhao, C., Zhang, Q., Deng, Z., Huang, M., Ma, X., & Tie, X. (2009). Aircraft study of aerosol vertical distributions over Beijing and their optical properties. Tellus, 61 B(5), 756–767.CrossRef
    Liu, D., Abuduwaili, J., Lei, J., & Wu, G. (2011). Deposition rate and chemical composition of the aeolian dust from a bare saline playa, Ebinur Lake, Xinjiang, China. Water, Air, & Soil Pollution, 218(1), 175–184.CrossRef
    Ma, L., Wu, J., & Abuduwaili, J. (2011). The climatic and hydrological changes and environmental responses recorded in lake sediments of Xinjiang, China. Journal of Arid Land, 3(1), 1–8.CrossRef
    Masoumi, A., Khalesifard, H., Bayat, A., & Moradhaseli, R. (2013). Retrieval of aerosol optical and physical properties from ground-based measurements for Zanjan, a city in Northwest Iran. Atmospheric Research, 120, 343–355.CrossRef
    McGowan, H., & Clark, A. (2008). Identification of dust transport pathways from Lake Eyre, Australia using Hysplit. Atmospheric Environment, 42(29), 6915–6925.CrossRef
    McGowan, H. A., Kamber, B., McTainsh, G. H., & Marx, S. K. (2005). High resolution provenancing of long travelled dust deposited on the Southern Alps, New Zealand. Geomorphology, 69(1), 208–221.CrossRef
    Micklin, P. (1988). Desiccation of the Aral Sea: a water management disaster in the Soviet Union. Science, 241(4870), 1170–1176.CrossRef
    Micklin, P. (2006). The Aral Sea crisis and its future: an assessment in 2006. Eurasian Geography and Economics, 47(5), 546–567.CrossRef
    Micklin, P. (2007). The Aral sea disaster. Annual Review of Earth and Planetary Sciences, 35, 47–72.CrossRef
    Micklin, P. (2010). The past, present, and future Aral Sea. Lakes & Reservoirs: Research & Management, 15(3), 193–213.CrossRef
    O’Hara, S. L., Wiggs, G. F., Mamedov, B., Davidson, G., & Hubbard, R. B. (2000). Exposure to airborne dust contaminated with pesticide in the Aral Sea region. The Lancet, 355(9204), 627–628.CrossRef
    Orlovsky, L., Orlovsky, N., & Durdyev, A. (2005). Dust storms in Turkmenistan. Journal of Arid Environments, 60(1), 83–97.CrossRef
    Putman, W. (2012). A dynamic portrait of global aerosols, high performance computing, networking, storage and analysis (SCC). SC Companion: IEEE, 2012, 1583–1588.
    Rashki, A., Kaskaoutis, D. G., Eriksson, P., Qiang, M., & Gupta, P. (2012). Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Research, 5, 51–62.CrossRef
    Rashki, A., Kaskaoutis, D., Goudie, A., & Kahn, R. (2013). Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, southeastern Iran. Science of the Total Environment, 463, 552–564.CrossRef
    Rashki, A., Kaskaoutis, D., Eriksson, P., Rautenbach, C. D. W., Flamant, C., & Vishkaee, F. A. (2014). Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations. Natural Hazards, 71(1), 563–585.CrossRef
    Rashki, A., Kaskaoutis, D., Francois, P., Kosmopoulos, P., & Legrand, M. (2015). Dust-storm dynamics over Sistan region, Iran: seasonality, transport characteristics and affected areas. Aeolian Research, 16, 35–48.CrossRef
    Rolph, G. D. (2016). Real-time Environmental Applications and Display System (READY) Website (http://​www.​ready.​noaa.​gov ). NOAA Air Resources Laboratory, College Park, Maryland.
    Roy, S. B., Smith, M., Morris, L., Orlovsky, N., & Khalilov, A. (2014). Impact of the desiccation of the Aral Sea on summertime surface air temperatures. Journal of Arid Environments, 110, 79–85.CrossRef
    Singer, A., Zobeck, T., Poberezsky, L., & Argaman, E. (2003). The PM10 and PM2.5 dust generation potential of soils/sediments in the southern Aral Sea Basin, Uzbekistan. Journal of Arid Environments, 54(4), 705–728.CrossRef
    Sinha, P., Kaskaoutis, D., Manchanda, R. & Sreenivasan, S. (2012). Characteristics of aerosols over Hyderabad in southern Peninsular India: synergy in the classification techniques. Annales Geophysicae. Copernicus GmbH, 30(9), 1393–1410.
    Sreekanth, V. (2014a). Dust aerosol height estimation: a synergetic approach using passive remote sensing and modelling. Atmospheric Environment, 90, 16–22.CrossRef
    Sreekanth, V. (2014b). On the classification and sub-classification of aerosol key types over south central peninsular India: MODIS–OMI algorithm. Science of the Total Environment, 468, 1086–1092.CrossRef
    Surkova, G. V. (2010). Regional climate variability. In: Kostianoy, A. G., Kosarev, A. N. (Eds.), The Aral Sea Environment (pp. 83–100). Springer-Verlag, Berlin.
    Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K., Veefkind, P., & Levelt, P. (2007). Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. Journal of Geophysical Research: Atmospheres (1984–2012), 112, D24S47. doi:10.​1029/​2007JD008809 .
    Tsoar, H., & Pye, K. (1987). Dust transport and the question of desert loess formation. Sedimentology, 34(1), 139–153.
    Wang, Y., & Wu, S. (2003). Environment change over the Aydingkol Lake Region in Turpan Basin, Xinjiang. Journal Of Glaciology And Geocryology, 25(2), 229–231.
    Washington, R., Todd, M., Middleton, N. J., & Goudie, A. S. (2003). Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Annals Association of American Geographers, 93(2), 297–313.CrossRef
    White, K. D. (2014). Nature and economy in the Aral Sea basin. In: Micklin P., Aladin N. V., Plotnikov I., (Eds.), The Aral Sea(pp. 301–335). Springer Berlin Heidelberg.
    Wiggs, G. F., O’hara, S. L., Wegerdt, J., Van Der Meer, J., Small, I., & Hubbard, R. (2003). The dynamics and characteristics of aeolian dust in dryland central Asia: possible impacts on human exposure and respiratory health in the Aral Sea basin. The Geographical Journal, 169(2), 142–157.CrossRef
    Wucherer, W., & Breckle, S. W. (2001). Vegetation dynamics on the dry sea floor of the Aral Sea. In: Breckle, S. W.,Veste, M., & Wucherer, W. (Eds.), Sustainable Land Use inDeserts (pp.52–69). Springer Berlin Heidelberg.
    Yue, L., Yang, L., & Li, Z. (2004). Lacustrine deposit in the Alxa Plateau and the sand dust strom in northern China. Quaternary Sciences, 24(3), 311–317.
    Yumimoto, K., Eguchi, K., Uno, I., Takemura, T., Liu, Z., Shimizu, A., & Sugimoto, N. (2009). An elevated large-scale dust veil from the Taklimakan Desert: intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models. Atmospheric Chemistry and Physics, 9(21), 8545–8558.CrossRef
  • 作者单位:Yongxiao Ge (1) (2) (3)
    Jilili Abuduwaili (1) (3)
    Long Ma (1) (3)
    Dongwei Liu (4)

    1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No. 818 South Beijing Road, Urumqi, 830011, Xinjiang, People’s Republic of China
    2. University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
    3. CAS Research Center for Ecology and Environment of Central Asia, Urumqi, 830011, People’s Republic of China
    4. College of Environment and Resources of Inner Mongolia University, Hohhot, 010021, People’s Republic of China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
The drastic desiccation of the Aral Sea has led to severe desertification of the former lake areas. Dust storms occur frequently, causing regional environmental degradation of the Aral basin and a serious ecological disaster. Knowledge of the temporal variability in dust emissions and the potential diffusion characteristics of dust aerosol originating from the Aral Sea basin in recent years are, however, lacking. To address this knowledge gap, we studied the interannual and intraannual changes in dust aerosol from the Aral Sea basin and its potentially seasonal diffusion characteristics from 2005 to 2013 using Ozone Monitoring Instrument (OMI) aerosol data (2005–2013) and the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Results show that the OMI aerosol index (AI) annual mean, standard deviation, median, and maximum values exhibit a strong increasing trend because of the continuous decrease in the water level since 2005. The annually mean OMI AI increases to 1.47 by 2013. Peak AI values are recorded in spring (March–May) and early winter (November–January of the following year), indicating notifying seasonal differences. The potential distance and height of air parcel trajectories to the northeast are greater than those to the west and south, whereas the air parcel trajectory proportion of the former is lower than that of the latter. The potential transport distance of dust aerosol to the northeast is greatest in spring and winter. This transport distance is less in autumn, with the minimum observed in summer. Dust transport distance to the west and south in different seasons is not significantly different. The present results may help in further understanding the emission, long-range transport, and deposition of dust from the dry lake bed of the Aral Sea as well as providing a motivation for the sensible use and protection of these tail-end lakes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700