Amorphous iron phosphate/carbonized polyaniline nanorods composite as cathode material in sodium-ion batteries
详细信息    查看全文
  • 作者:Yao Liu ; Yirong Zhou ; Shiming Zhang ; Junxi Zhang…
  • 关键词:Iron phosphate/Ccarbonized polyaniline nanorods composite ; Carbonized polyaniline nanorods ; Iron phosphate ; Sodium ; ion battery
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:2
  • 页码:479-487
  • 全文大小:2,759 KB
  • 参考文献:1.Marcia KM (2011) U.S. Geological Survey: mineral commodity summaries 2011. USGS, USA
    2.Kim SW, Seo DH, Ma X (2012) Adv Energy Mater 2:710–721CrossRef
    3.Song W, Wu Z, Chen J, Lan Q, Zhu Y (2014) Electrochim Acta 146:142–150CrossRef
    4.Larcher D, Tarascon JM (2015) Nat Chem 7:19–29CrossRef
    5.Noguchi Y, Kobayashi E, Plashnitsa LS (2013) Electrochim Acta 101:59–65CrossRef
    6.Nithya C, Gopukumar S (2015) Energy Environ Sci 4:253–278
    7.Palomares V, Serras P, Villaluenga I (2012) Energy Environ Sci 5:5884–5901CrossRef
    8.Ellis BL, Nazar LF (2012) Solid State Mater Sci 16:168–177CrossRef
    9.Hong SY, Kim Y, Park Y, Choi A (2013) Energy Environ Sci 6:2067–2081CrossRef
    10.Liu Y, Xu S, Zhang SM (2015) J Mater Chem A 3:5501–5508CrossRef
    11.Xu SJ, Zhang SM, Zhang JX, Liu Y (2014) J Mater Chem A 2:7221–7728CrossRef
    12.Liu Y, Xu Y (2012) Nano Lett 12:5664–5668CrossRef
    13.Zaghib K, Trottier J, Hovington P (2011) J Power Sources 196:9612–9617CrossRef
    14.Oh SM, Myung ST, Hassoun (2012) Electrochem Commun 22:149–152CrossRef
    15.Burba CM, Frech R (2006) Spectrochim Acta A Mol Biomol Spectrosc 65:44–50CrossRef
    16.Song YN, Suzuki M, Whittingham MS (2002) Inorg Chem 41:5578–5786
    17.Whiteside A, Fisher CAJ, Parker SC (2014) Phys Chem Chem Phys 16:21788–21794CrossRef
    18.Allen JL, Jow TR, Wolfenstine J (2008) J Solid State Electrochem 12:1031–1033CrossRef
    19.Huang C, Cheng KH, Hsiao YS (2015) J Solid State Electrochem 19:2245–2253CrossRef
    20.Liu Y, Zhou YR, Zhang JX, Zhang SM (2015) Phys Chem Chem Phys 17:22144–22151CrossRef
    21.Churikov AV, Ivanishchev AV (2013) J Solid State Electrochem 18:1425–1441CrossRef
    22.Zhang JX, Yang X (2011) Funct Mater Lett 4:323–326CrossRef
    23.Yu SX, Dan S, Luo GE, Liu W (2012) J Solid State Electrochem 16:1675–1681CrossRef
    24.Fang Y, Xiao L (2014) Nano Lett 14:3539–3543CrossRef
    25.Cai Z, Martin CR (1989) J Am Chem Soc 111:4138–4139CrossRef
    26.Ding HJ, Wan MX (2007) Adv Mater 19:465–469CrossRef
    27.Mentus S, Ciric-Marjanovic G (2009) Nanotechnology 20:245601–245612CrossRef
    28.Peřinka N, Držková M, Hajná M (2014) J Therm Anal 116:589–595CrossRef
    29.Patil DS, Shaikh JS, Pawar SA (2012) Phys Chem Chem Phys 14:11886–11895CrossRef
    30.Li XG, Li H, Huang MR (2011) J Phys Chem C 115:9486–9497
    31.Zhou Z, He D (2009) Thin Solid Films 517:6767–6771CrossRef
    32.Huang J, Virji S, Weiller B (2003) J Am Chem Soc 125:314–316CrossRef
    33.Hiura H, Ebbesen TW, Tanigaki K, Takahashi H (1993) Chem Phys Lett 202:509–512CrossRef
    34.Bernard S, Beyssac O, Benzerara K, Findling N, Tzvetkov G (2010) Carbon 48:2506–2516CrossRef
    35.Nascimento GM, Silva CHB, Temperini MLA (2008) Polym Degrad Stab 93:291–297CrossRef
    36.Zaghib K, Julien CM (2005) J Power Sources 142:279–284CrossRef
    37.Li C, Miao X (2015) J Mater Chem A 3:8265–8271CrossRef
    38.Ivers-Tiffée E, Weber A, Schichlein H (2010) Handbook of Fuel Cells. John Wiley & Sons, Chichester
    39.Casalbore M, Giuseppe C, Nadia B, Giancardo G (1998) J Solid State Electrochem 3:15–24CrossRef
  • 作者单位:Yao Liu (1)
    Yirong Zhou (1)
    Shiming Zhang (1) (2)
    Junxi Zhang (1)
    Ping Ren (1)
    Chao Qian (1)

    1. Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, People’s Republic of China
    2. State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
As-prepared polyaniline (PANI) nanorods have been used to synthesize an iron phosphate/polyaniline (FePO4/PANI) composition through the microemulsion technique. After sintering at 460 °C under a nitrogen protective atmosphere, the PANI carbonized, yielding the amorphous iron phosphate/carbonized polyaniline nanorods (FePO4/CPNRs) composite, which acts as the cathode material in sodium-ion batteries (SIBs). The electrochemical performance of FePO4/CPNRs composite shows an initial discharge specific capacity of 140.2 mAh g−1, with the discharge specific capacity being maintained at 134.4 mAh g−1 after the 120th cycle, up to 87.9 % of the theoretical capacity (154.1 mAh g−1 for NaFePO4), as well as an excellent rate capability in sodium-ion batteries. Compared with pure FePO4, the electrochemical performance has been greatly improved. On the one hand, using the CPNRs as conductive medium significantly improves electronic transport. On the other hand, the FePO4 sphere of nanoscale particles, which has a large specific surface area, can promote an active material/electrolyte interface reaction and improve the speed of sodiation and desodiation during the charge and discharge process. The amorphous FePO4/CPNRs composite shows outstanding electrochemical performance as competitive cathode material in SIBs. Keywords Iron phosphate/Ccarbonized polyaniline nanorods composite Carbonized polyaniline nanorods Iron phosphate Sodium-ion battery

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700