Phase-field modeling of the influence of domain structures on the electrocaloric effects in PbTiO3 thin films
详细信息    查看全文
  • 作者:Jun Yang Lee (1)
    Ai Kah Soh (1)
    Hai Tao Chen (2)
    Liang Hong (3)

    1. School of Engineering
    ; Monash University Malaysia ; Bandar Sunway ; 46150 ; Malaysia
    2. Institute of Applied Physics and Computational Mathematics
    ; Beijing ; 100094 ; People鈥檚 Republic of China
    3. Department of Materials Science and Engineering
    ; The Pennsylvania State University ; University Park ; PA ; 16802 ; USA
  • 刊名:Journal of Materials Science
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:50
  • 期:3
  • 页码:1382-1393
  • 全文大小:1,286 KB
  • 参考文献:1. Childress JD (2004) Application of a ferroelectric material in an energy conversion device. J Appl Phys 33:1793鈥?798 CrossRef
    2. Zhang J, Alpay SP, Rossetti GA (2011) Influence of thermal stresses on the electrocaloric properties of ferroelectric films. Appl Phys Lett 98:132907 CrossRef
    3. Zhang X, Wang JB, Li B, Zhong XL, Lou XJ, Zhou YC (2011) Sizable electrocaloric effect in a wide temperature range tuned by tensile misfit strain in BaTiO3 thin films. J Appl Phys 109:126102 CrossRef
    4. Thacher PD (2003) Electrocaloric effects in some ferroelectric and antiferroelectric Pb (Zr, Ti) O3 compounds. J Appl Phys 39:1996鈥?002 CrossRef
    5. Fatuzzo E, Kiess H, Nitsche R (2004) Theoretical efficiency of pyroelectric power converters. J Appl Phys 37:510鈥?16 CrossRef
    6. Tuttle BA, Payne DA (1981) The effects of microstructure on the electrocaloric properties of Pb (Zr, Sn, Ti) O3 ceramics. Ferroelectrics 37:603鈥?06 CrossRef
    7. Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND (2006) Giant electrocaloric effect in thin-film PbZr0. 95Ti0. 05O3. Science 311:1270鈥?271 CrossRef
    8. Neese B, Chu B, Lu S-G, Wang Y, Furman E, Zhang Q (2008) Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321:821鈥?23 CrossRef
    9. Akcay G, Alpay SP, Rossetti GA Jr, Scott JF (2008) Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films. J Appl Phys 103:024104 CrossRef
    10. Karthik J, Martin LW (2011) Effect of domain walls on the electrocaloric properties of Pb (Zr1鈥搙, Tix) O3 thin films. Appl Phys Lett 99:032904 CrossRef
    11. Qiu JH, Jiang Q (2009) Grain size effect on the electrocaloric effect of dense BaTiO 3 nanoceramics. J Appl Phys 105:034110 CrossRef
    12. Sheng G, Zhang JX, Li YL et al (2008) Domain stability of PbTiO3 thin films under anisotropic misfit strains: phase-field simulations. J Appl Phys 104:054105 CrossRef
    13. Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113鈥?40 CrossRef
    14. Chen LQ (2008) Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J Am Ceram Soc 91:1835鈥?844 CrossRef
    15. Li YL, Hu SY, Liu ZK, Chen LQ (2001) Phase-field model of domain structures in ferroelectric thin films. Appl Phys Lett 78:3878鈥?880 CrossRef
    16. Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad 32:268鈥?94 CrossRef
    17. Alpay S, Nagarajan V, Rossetti G (2009) Recent developments in ferroelectric nanostructures and multilayers. J Mater Sci 44:5021鈥?024 CrossRef
    18. Valant M, Axelsson A-K, Le Goupil F, Alford NM (2012) Electrocaloric temperature change constrained by the dielectric strength. Mater Chem Phys 136:277鈥?80 CrossRef
    19. Li B, Wang JB, Zhong XL, Wang F, Zeng YK, Zhou YC (2013) The coexistence of the negative and positive electrocaloric effect in ferroelectric thin films for solid-state refrigeration. EPL 102:47004 CrossRef
    20. Li B, Wang JB, Zhong XL, Wang F, Zhou YC (2010) Room temperature electrocaloric effect on PbZr0. 8Ti0. 2O3 thin film. J Appl Phys 107:014109 CrossRef
    21. Wang YU, Jin YM, Khachaturyan AG (2003) Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin films. Acta Mater 51:4209鈥?223 CrossRef
    22. Li YL, Hu SY, Liu ZK, Chen LQ (2002) Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater 50:395鈥?11 CrossRef
    23. Wang YU, Jin YM, Khachaturyan AG (2002) Phase field microelasticity theory and simulation of multiple voids and cracks in single crystals and polycrystals under applied stress. J Appl Phys 91:6435鈥?451 CrossRef
    24. Wang YU, Jin YM, Khachaturyan AG (2002) Phase field microelasticity theory and modeling of elastically and structurally inhomogeneous solid. J Appl Phys 92:1351鈥?360 CrossRef
    25. Wang YU, Jin YM, Khachaturyan AG (2004) Phase field microelasticity modeling of surface instability of heteroepitaxial thin films. Acta Mater 52:81鈥?2 CrossRef
    26. Parui J, Krupanidhi SB (2008) Electrocaloric effect in antiferroelectric PbZrO3 thin films. Phys Status Solidi (RRL) 2:230鈥?32 CrossRef
    27. Saranya D, Chaudhuri AR, Parui J, Krupanidhi S (2009) Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary. Bull Mater Sci 32:259鈥?62 CrossRef
    28. Hao X, Yue Z, Xu J, An S, Nan C-W (2011) Energy-storage performance and electrocaloric effect in (100)-oriented Pb0. 97La0. 02 (Zr0. 95Ti0. 05) O3 antiferroelectric thick films. J Appl Phys 110:064109 CrossRef
    29. Li YL, Cross LE, Chen LQ (2005) A phenomenological thermodynamic potential for BaTiO 3 single crystals. J Appl Phys 98:064101 CrossRef
    30. Li YL, Hu SY, Liu ZK, Chen LQ (2002) Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl Phys Lett 81:427鈥?29 CrossRef
    31. Li YL, Chen LQ, Asayama G, Schlom DG, Zurbuchen MA, Streiffer SK (2004) Ferroelectric domain structures in SrBi2Nb2O9 epitaxial thin films: electron microscopy and phase-field simulations. J Appl Phys 95:6332鈥?340 CrossRef
    32. Khachaturyan AG (1983) Theory of structural transformations in solids. Wiley, New York
    33. Haun MJ, Furman E, Jang SJ, McKinstry HA, Cross LE (1987) Thermodynamic theory of PbTiO3. J Appl Phys 62:3331鈥?338 CrossRef
    34. Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys Rev Lett 80:1988 CrossRef
    35. Zhang J, Heitmann AA, Alpay SP, Rossetti GA Jr (2009) Electrothermal properties of perovskite ferroelectric films. J Mater Sci 44:5263鈥?273. doi:10.1007/s10853-009-3559-8 CrossRef
    36. Mikhaleva EA, Flerov IN, Gorev MV et al (2012) Caloric characteristics of PbTiO3 in the temperature range of the ferroelectric phase transition. Phys Solid State 54:1832鈥?840 CrossRef
    37. Chen LQ, Shen J (1998) Applications of semi-implicit Fourier-spectral method to phase field equations. Comput Phys Commun 108:147鈥?58 CrossRef
    38. Kim YK, Kim SS, Shin H, Baik S (2004) Thickness effect of ferroelectric domain switching in epitaxial PbTiO 3 thin films on Pt (001)/MgO (001). Appl Phys Lett 84:5085鈥?087 CrossRef
    39. Kim YK, Lee K, Baik S (2004) Domain structure of epitaxial PbTiO 3 thin films on Pt (001)/MgO (001) substrates. J Appl Phys 95:236鈥?40 CrossRef
    40. Janolin P-E (2009) Strain on ferroelectric thin films. J Mater Sci 44:5025鈥?048. doi:10.1007/s10853-009-3553-1 CrossRef
    41. Qiu Q, Nagarajan V, Alpay S (2008) Film thickness versus misfit strain phase diagrams for epitaxial PbTiO 3 ultrathin ferroelectric films. Phys Rev B 78:064117 CrossRef
    42. Qiu Q, Mahjoub R, Alpay S, Nagarajan V (2010) Misfit strain鈥揻ilm thickness phase diagrams and related electromechanical properties of epitaxial ultra-thin lead zirconate titanate films. Acta Mater 58:823鈥?35 CrossRef
    43. Choudhury S, Chen LQ, Li YL (2007) Correlation between number of ferroelectric variants and coercive field of lead ziconate titanate single crystals. Appl Phys Lett 91:032902 CrossRef
    44. Hong S, Colla EL, Kim E et al (1999) High resolution study of domain nucleation and growth during polarization switching in Pb (Zr, Ti) O3 ferroelectric thin film capacitors. J Appl Phys 86:607鈥?13 CrossRef
    45. Ponomareva I, Lisenkov S (2012) Bridging the macroscopic and atomistic descriptions of the electrocaloric effect. Phys Rev Lett 108:167604 CrossRef
    46. Kesim M, Zhang J, Alpay S, Martin L (2014) Enhanced electrocaloric and pyroelectric response from ferroelectric multilayers. Appl Phys Lett 105:052901 CrossRef
    47. Li Y, Hu S, Tenne D et al (2007) Prediction of ferroelectricity in BaTiO3/SrTiO3 superlattices with domains. Appl Phys Lett 91:112914 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
A phase-field model has been developed to study the influence of epitaxial strains and domain structures on the electrocaloric effects (ECEs) in PbTiO3 (PTO) thin films. The simulated domain-switching dynamics obtained from the proposed model was tallied with the existing experimental results. In the case of single-domain PTO thin film, the ECE gradually increased with the increasing epitaxial strain, whereas, in the case of poly-domain PTO thin film, the influence of epitaxial strain on ECE can be divided into three regions of stable domain structures, i.e., c-domains, a/c-domains, and a-domains regions. It is worth noting that the maximum ECE occurred under a tensile epitaxial strain in the a/c-domains region, which was the consequence of the competition between the enhancement of ECE and the reduction of c-domains volume fraction, both caused by the increasing tensile epitaxial strain. Although the change of temperature arising from the ECE may not be large enough to be viable for practical applications, it does illustrate the important influence of domain structures on the ECEs of thin films, which has not gained much attention of most researchers whose focus is still on single-domain thin films.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700