Assessment of source contributions to air pollution in Beirut, Lebanon: a comparison of source-based and tracer-based modeling approaches
详细信息    查看全文
  • 作者:Antoine Waked ; Charbel Afif ; Christian Seigneur
  • 关键词:Source apportionment ; Organic aerosols ; Tracer ; based approach ; Modeling approaches
  • 刊名:Air Quality, Atmosphere & Health
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:8
  • 期:5
  • 页码:495-505
  • 全文大小:1,041 KB
  • 参考文献:Afif C, Chélala C, Borbon A et al (2008) SO2 in Beirut: air quality implication and effects of local emissions and long-range transport. Air Qual Atmos Health 1:167-78. doi:10.-007/?s11869-008-0022-y CrossRef
    Afif C, Dutot A, Jambert C et al (2009) Statistical approach for the characterization of NO2 concentrations in Beirut. Air Qual Atmos Health 2:57-7. doi:10.-007/?s11869-009-0034-2 CrossRef
    Baldasano JM, Güereca LP, López E et al (2008) Development of a high-resolution (1?km?×-?km, 1?h) emission model for Spain: the high-elective resolution modelling emission system (HERMES). Atmos Environ 42:7215-233. doi:10.-016/?j.?atmosenv.-008.-7.-26 CrossRef
    Couvidat F, Debry é, Sartelet K, Seigneur C (2012) A hydrophilic/hydrophobic organic (H2O) aerosol model: development, evaluation and sensitivity analysis. J Geophys Res 117, D10304. doi:10.-029/-011JD017214 CrossRef
    Couvidat F, Kim Y, Sartelet K et al (2013) Modeling secondary organic aerosol in an urban area: application to Paris, France. Atmos Chem Phys 13:983-96. doi:10.-194/?acp-13-983-2013 CrossRef
    Crippa M, Canonaco F, Slowik JG et al (2013) Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment. Atmos Chem Phys 13:8411-426. doi:10.-194/?acp-13-8411-2013 CrossRef
    Debry E, Fahey K, Sartelet K et al (2007) Technical note: a new size resolved aerosol model (SIREAM). Atmos Chem Phys 7:1537-547. doi:10.-194/?acp-7-1537-2007 CrossRef
    Ding X, Wang X-M, Gao B et al (2012) Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south China. J Geophys Res 117, D05313. doi:10.-029/-011JD016596
    El Haddad I, Marchand N, Temime-Roussel B et al (2011a) Insights into the secondary fraction of the organic aerosol in a Mediterranean urban area: Marseille. Atmos Chem Phys 11:2059-079. doi:10.-194/?acp-11-2059-2011 CrossRef
    El Haddad I, Marchand N, Wortham H et al (2011b) Primary sources of PM2.5 organic aerosol in an industrial Mediterranean City, Marseille. Atmos Chem Phys 11:2039-058. doi:10.-194/?acp-11-2039-2011 CrossRef
    Friedlander SK (1973) Chemical element balances and identification of air pollution sources. Environ Sci Technol 7:235-40. doi:10.-021/?es60075a005 CrossRef
    Gelencsér A, May B, Simpson D et al (2007) Source apportionment of PM2.5 organic aerosol over Europe: primary/secondary, natural/anthropogenic, and fossil/biogenic origin. J Geophys Res 112:D23S04. doi:10.-029/-006JD008094
    Geron CD, Arnts RR (2010) Seasonal monoterpene and sesquiterpene emissions from Pinus taeda and Pinus virginiana. Atmos Environ 44:4240-251. doi:10.-016/?j.?atmosenv.-010.-6.-54 CrossRef
    Guenther A, Geron C, Pierce T et al (2000) Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmos Environ 34:2205-230. doi:10.-016/?S1352-2310(99)00465-3 CrossRef
    Guenther A, Karl T, Harley P et al (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181-210. doi:10.-194/?acp-6-3181-2006 CrossRef
    Hallquist M, Wenger JC, Baltensperger U et al (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155-236. doi:10.-194/?acp-9-5155-2009 CrossRef
    Hopke PK (2003) Recent developments in receptor modeling. J Chemometr 17:255-65. doi:10.-002/?cem.-96 CrossRef
    Horowitz LW, Fiore AM, Milly GP et al (2007) Observational constraints on the chemistry of isoprene nitrates over the eastern United States. J Geophys Res 112:D12S08. doi:10.-029/-006JD007747 CrossRef
    Hoyle CR, Boy M, Donahue NM et al (2011) A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmos Chem Phys 11:321-43. doi:10.-194/?acp-11-321-2011 CrossRef
    IPCC (International Panel on Climate Change). Forster, P, V. Ramaswamy, P. Artaxo, T, et al. (2007) Changes in atmospheric constituents and in radiative forcing. In: Climate change: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K. B., Tignor M., Miller H. L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
    Kim Y, Sartelet K, Seigneur C (2009) Comparison of two gas-phase chemical kinetic mechanisms of ozone formation over Europe. J Atmos Chem 62:89-19. doi:10.-007/?s10874-009-9142-5 CrossRef
    Kleeman MJ, Riddle SG, Robert MA et al (2008) Source apportionment of fine (PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode. Environ Sci Technol 43:272-79. doi:10.-021/?es800400m CrossRef
    Kleindienst TE, Jaoui M, Lewandowski M et al (2007) Estimates of the contributions of biogenic and anthropogenic hydrocarbons to seconda
  • 作者单位:Antoine Waked (1) (2)
    Charbel Afif (2)
    Christian Seigneur (1)

    1. CEREA, Joint Laboratory école des Ponts ParisTech/EDF R&D, Université Paris-Est, Champs-sur-Marne, France
    2. Laboratoire des émissions, Mesures et Modélisation Atmosphériques, Unité Environnement, Génomique Fonctionnelle et études Mathématiques, Centre d’Analyses et de Recherche, Faculty of Sciences, Saint Joseph University, Beirut, Lebanon
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Health Promotion and Disease Prevention
    Environment
  • 出版者:Springer Netherlands
  • ISSN:1873-9326
文摘
A chemical-transport model (CTM), Polyphemus/Polair3D, is used to investigate the contributions of various anthropogenic and biogenic sources to total organic carbon (OC) in PM2.5 in Beirut, Lebanon, during the summer of 2011. Those results are compared to a tracer-based source apportionment of OC at an ambient site in Beirut where a measurement campaign was conducted in July 2011. The results obtained from the CTM in the base simulation S1 suggest contributions to total simulated OC mass (3.24 μg/m3) of 66 % (2.14?±-.07 μg/m3) from fossil fuel burning (FFB) and 8 % (0.27?±-.135 μg/m3) from biogenic secondary organic carbon (BSOC). The tracer-based approach leads to contribution estimates to total measured OC mass (5.6 μg/m3) of 16 % (0.9 μg/m3?±-.22) from FFB, 53 % (2.9?±-.7 μg/m3) from BSOC, and 32 % (1.8?±-.88 μg/m3) from cooking activities. In a second CTM simulation S2, emissions related to cooking activities were added to the emission inventory, monoterpene and sesquiterpene secondary organic aerosol (SOA) surrogate species were added to the boundary conditions, and a lower ratio of semi-volatile organic compounds to primary organic aerosols (SVOC/POA) was used. The S2 results obtained showed contributions to total simulated OC mass (3.01 μg/m3) of 33 % (0.98?±-.49 μg/m3) from FFB, 18 % (0.53?±-.27 μg/m3) from BSOC, and 39 % (1.2?±-.6 μg/m3) from cooking activities. The differences between these two methods are discussed in terms of their uncertainties and biases. The comparison of both approaches showed that the model underestimates the secondary fraction of OC, which may be due to underestimations of some biogenic volatile organic compound (VOC) emissions and/or boundary concentrations as well as the use of SOA yields that may not be representative of the eastern Mediterranean region. Concerning the tracer-based approach, the use of tracer/OC ratios that are not specific to Lebanon because of a lack of data could represent a limitation of this methodology. Nevertheless, this comparative analysis suggests that on-road transportation and diesel generators used for electricity production are major sources of atmospheric PM and should be targeted for emission reduction. Finally, cooking activities, which were identified as a significant source of PM with the tracer-based approach, should be studied further. Keywords Source apportionment Organic aerosols Tracer-based approach Modeling approaches

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700