Variation in carbon, nitrogen and phosphorus partitioning between above- and belowground biomass along a precipitation gradient at Tibetan Plateau
详细信息    查看全文
  • 作者:Jiang-tao Hong ; Xiao-dan Wang ; Jian-bo Wu
  • 关键词:Biomass allocation ; Nutrient concentration ; Qinghai ; Tibetan Plateau ; Alpine steppe ; Stipa purpurea
  • 刊名:Journal of Mountain Science
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:13
  • 期:4
  • 页码:661-671
  • 全文大小:2,306 KB
  • 参考文献:Aerts R, Chapin F (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30:1–67. DOI: 10.1016/s0065-2504(08)60016-1CrossRef
    Bai HZ, Dong AX, Li DL, Feng F (2005) Temporal and spatial characteristics of strong wind and dust days in Qinghai-Xizang Plateau and along Qingzang Railway. Plateau Meteor 24: 311–315. (In Chinese)
    Brandt LA, King JY, Milchunas DG (2007) Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Global Change Biology 13(10): 2193–2205. DOI: 10.1111/j.1365-2486.2007.01428.xCrossRef
    Castle S, Neff J (2009) Plant response to nutrient availability across variable bedrock geologies. Ecosystems 12(1): 101–113. DOI: 10.1007/s10021-008-9210-8CrossRef
    Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451: 712–715. DOI: 10.1038/nature06503CrossRef
    Coombs J, Hind G, Leegood RC, et al. (1985) Analytical techniques. In: Coombs J, Hall DO, Long SP, Scurlock JM (ed.), Techniques in bioproductivity and photosynthesis. Pergamon Press, Oxford, UK. pp 298.
    Fan J, Wang K, Harris W, et al. (2009) Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. Journal of Arid Environments 73(4-5): 521–528. DOI: 10.1016/j.jaridenv.2008.12.004CrossRef
    Güsewell S, Koerselman W, Verhoeven JT (2003) Biomass N: P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecological Applications 13(2): 372–384. DOI: 10.1890/1051-0761(2003)013CrossRef
    Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytologist 164(2): 243–266. DOI: 10.1111/j.1469-8137.2004.01192.xCrossRef
    Garibaldi LA, Kitzberger T, Noemí Mazía C, et al. (2010) Nutrient supply and bird predation additively control insect herbivory and tree growth in two contrasting forest habitats. Oikos 119(2): 337–349. DOI: 10.1111/j.1600-0706.2009.17862.xCrossRef
    Ghidey F, Alberts E (1997) Plant root effects on soil erodibility, splash detachment, soil strength, and aggregate stability. Transactions of the ASAE 40(1): 129–135. DOI: 10.13031/2013.21257CrossRef
    Gilliam FS (2006) Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology 94(6): 1176–1191. DOI: 10.1111/j.1365-2745.2006.01155.xCrossRef
    Han WX, Fang JY, Reich PB, et al. (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters 14(8): 788–796. DOI: 10.1111/j.1461-0248.2011.01641.xCrossRef
    Hui D, Jackson RB (2006) Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytologist 169(1): 85–93. DOI: 10.1111/j.1469-8137.2005.01569.xCrossRef
    Institute of soil academia sinica (1978) Analysis of soil physics and chemistry. Science and Technology of Shanghai Publications, Shanghai, China. (In Chinese)
    Jefferies RL, Maron JL (1997) The embarrassment of riches: atmospheric deposition of nitrogen and community and ecosystem processes. Trends Ecology & Evolution 12(2): 74–78. DOI: 10.1016/S0169-5347(96)20125-9CrossRef
    Körner C, Renhardt U (1987) Dry matter partitioning and root length/leaf area ratios in herbaceous perennial plants with diverse altitudinal distribution. Oecologia 74(3): 411–418. DOI:10.1007/BF00378938CrossRef
    Kerkhoff AJ, Fagan WF, Elser JJ, et al. (2006) Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist 168(4): E103–E122. DOI: 10.1086/507879CrossRef
    Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33(6): 1441–1450. DOI: 10.2307/2404783CrossRef
    Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Loeppert PA, et al. (eds.), Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison, USA, pp 869-920.
    Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. New York, Springer. pp 299–351.CrossRef
    Li X, Zhang X, Wu J, et al. (2011) Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environmental earth sciences 64(7): 1911–1919. DOI: 10.1007/s12665-011-1004-1CrossRef
    Li Y, Xu XQ, Zhu XM, et al. (1992) Effectiveness of plant roots on increasing the soil permeability on the Loess Plateau. Chinese Science Bulletin 37(20): 1735–1738. (In Chinese)
    Luo TX, Li WH, Zhu HZ (2002) Estimated biomass and productivity of natural vegetation on the Tibetan Plateau. Ecological Applications 12(4): 980–997. DOI: 10.1890/1051-0761(2002)012[0980:EBAPON]2.0.CO;2CrossRef
    Marczak LB, Wieski K, Denno RF, et al. (2013) Importance of local vs. geographic variation in salt marsh plant quality for arthropod herbivore communities. Journal of Ecology 101(5): 1169–1182. DOI: 10.1111/1365-2745.12137
    Meier I C, Leuschner C (2010) Variation of soil and biomass carbon pools in beech forests across a precipitation gradient. Global Change Biology 16(3): 1035–1045. DOI: 10.1111/j.1365-2486.2009.02074.xCrossRef
    Mokany K, Raison R, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology 12(1): 84–96. DOI: 10.1111/j.1365-2486.2005.001043.xCrossRef
    Mooney H, Ferrar PJ, Slatyer R (1978) Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus. Oecologia 36(1): 103–111. DOI: 10.1007/BF00344575CrossRef
    Ordoñez JC, Van Bodegom PM, et al. (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography 18(2): 137–149. DOI: 10.1111/j.1466-8238.2008.00441.xCrossRef
    Orians GH, Solbrig OT (1977) A cost-income model of leaves and roots with special reference to arid and semiarid areas. The American Naturalist 111(980): 677–690. DOI: 10.1086/283199CrossRef
    Page AL (1982) Methods of Soil Analysis, Part 2–Chemical and Microbiological Properties 2nd edn. American Society of Agronomy, Madison, WI, USA. pp 595-624.
    Posada JM, Schuur EA (2011) Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia 165(3): 783–795. DOI: 10.1007/s00442-010-1881-0CrossRef
    Santiago LS, Schuur EA, Silvera K (2005) Nutrient cycling and plant-soil feedbacks along a precipitation gradient in lowland Panama. Journal of Tropical Ecology 21(4): 461–470. DOI: 10.1017/S0266467405002464CrossRef
    Sardans J, Rivas-Ubach A, Peñuelas J (2012) The C: N: P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspectives in Plant Ecology 14(1): 33–47. DOI: 10.1016/j.ppees.2011.08.002CrossRef
    Scott D, Billings W (1964) Effects of environmental factors on standing crop and productivity of an alpine tundra. Ecological Monographs 34(3): 243–270. DOI: 10.2307/1948502CrossRef
    Snyman HA (2009) Root studies on grass species in a semi-arid South Africa along a degradation gradient. Agriculture, Ecosystems & Environment 130(3-4): 100–108. DOI: 10.1016/j.agee.2008.12.003CrossRef
    Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, New Jersey, USA. pp 1–43.
    Sun J, Cheng GW, Li WP (2013) Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences 10, 1707–1715. DOI: 10.5194/bg-10-1707-2013CrossRef
    Tibet Land Administrative Bureau (1994) Tibet’s Soil Resources. Beijing Science Press, China. pp 151–158. (In Chinese).
    Vogt K, Persson H (1991) Measuring growth and development of roots. Techniques and approaches in forest tree ecophysiology. CRC Press, Boca Raton, Florida, USA. pp 477–501.
    Wu TG, Dong Y, Yu MK, et al. (2012) Leaf nitrogen and phosphorus stoichiometry of (Quercus) species across China. Forest Ecology and Management 284: 116–123. DOI: 10.1016/j.foreco.2012.07.025CrossRef
    Yan Y, Zhang JG, Zhang JH, et al. (2005) The belowground biomass in alpine grassland in Nakchu Prefecture of Tibet. Acta Ecologica Sinica 11: 2818–2823. (In Chinese).
    Yang YH, Fang JY, Ji CJ, et al. (2009a). Above-and belowground biomass allocation in Tibetan grasslands. Journal of Vegetation Science. 20(1): 177–184. DOI: 10.1111/j.1654-1103.2009.05566.xCrossRef
    Yang YH, Fang JY, Pan YD, et al. (2009b) Aboveground biomass in Tibetan grasslands. Journal of Arid Environments. 73(1): 91–95. DOI: 10.1016/j.jaridenv.2008.09.027CrossRef
    Ye XH, Pan X, Cornwell WK, et al. (2015) Divergence of aboveand belowground C and N pool within predominant plant species along two precipitation gradients in North China. Biogeosciences 12: 457–465. DOI: 10.5194/bg-12-457-2015CrossRef
    Yu Q, Chen Q, Elser JJ, et al. (2010) Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters 13(11): 1390–1399. DOI: 10.1111/j.1461-0248.2010.01532.xCrossRef
  • 作者单位:Jiang-tao Hong (1) (2)
    Xiao-dan Wang (1)
    Jian-bo Wu (1)

    1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
  • 刊物主题:Earth Sciences, general; Geography (general); Environment, general; Ecology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1993-0321
文摘
Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon (C), nitrogen (N) and phosphorus (P) pools between above- and belowground biomass at the community level along a precipitation gradient. We conducted a transect (approx. 1300 km long) study of Stipa purpurea community in alpine steppe on the Tibet Plateau of China to test the variation of N pool of aboveground biomass/N pool of belowground biomass (AB/BB N) and P pool of aboveground biomass/P pool of belowground biomass (AB/BB P) along a precipitation gradient. The proportion of aboveground biomass decreased significantly from mesic to drier sites. Along the belt transect, the plant N concentration was relatively stable; thus, AB/BB N increased with moisture due to the major influences by above- and belowground biomass allocation. However, P concentration of aboveground biomass decreased significantly with increasing precipitation and AB/BB P did not vary with aridity because of the offset effect of the P concentration and biomass allocation. Precipitation gradients do decouple the N and P pool of a S. purpurea community along a precipitation gradient in alpine steppe. The decreasing of N:P in aboveground biomass in drier regions may indicate much stronger N limitation in more arid area.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700