High resolution profiles of elements in Atlantic tarpon (Megalops atlanticus) scales obtained via cross-sectioning and laser ablation ICP-MS: a literature survey and novel approach for scale analyses
详细信息    查看全文
  • 作者:Matthew Seeley ; Nathaniel Miller ; Benjamin Walther
  • 关键词:Atlantic tarpon ; Scales ; Otoliths ; ICP ; MS ; Laser ablation
  • 刊名:Environmental Biology of Fishes
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:98
  • 期:11
  • 页码:2223-2238
  • 全文大小:1,296 KB
  • 参考文献:Adams AJ, Horodysky AZ, McBride RS, Guindon K, Shenker J, MacDonald TC, Harwell HD, Ward R, Carpenter K (2014) Global conservation status and research needs for tarpons (Megalopidae), ladyfishes (Elopidae) and bonefishes (Albulidae). Fish 15:280鈥?11. doi:10.鈥?111/鈥婩af.鈥?2017
    Adey EA, Black KD, Sawyer T, Shimmield TM, Trueman CN (2009) Scale microchemistry as a tool to investigate the origin of wild and farmed Salmo salar. Mar Ecol Prog Ser 390:225鈥?35. doi:10.鈥?354/鈥婱eps08161 CrossRef
    Ayd谋n D, Tokal谋o臒lu 艦 (2014) Trace metals in tissues of the six most common fish species in the Black Sea, Turkey. Food Addit Contam Part B 8:25鈥?1. doi:10.鈥?080/鈥?9393210.鈥?014.鈥?49873 CrossRef
    Bagenal TB, Mackereth FJH, Heron J (1973) The distinction between brown trout and sea trout by the strontium content of their scales. J Fish Biol 5:555鈥?57. doi:10.鈥?111/鈥媕.鈥?095-8649.鈥?973.鈥媡b04488.鈥媥 CrossRef
    Belanger SE, Cherry DS, Ney JJ, Whitehurst DK (1987) Differentiation of freshwater versus saltwater striped bass by elemental scale analysis. Trans Am Fish Soc 116:594鈥?00. doi:10.鈥?577/鈥?548-8659(1987)116<594:鈥婦OFVSS>2.鈥?.鈥婥O;2 CrossRef
    Bijvelds MC, Flik G, Kolar Z, Wendelaar Bonga S (1996) Uptake, distribution and excretion of magnesium in Oreochromis mossambicus: dependence on magnesium in diet and water. Fish Physiol Biochem 15:287鈥?98. doi:10.鈥?007/鈥婤F02112355 CrossRef PubMed
    Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882鈥?894. doi:10.鈥?016/鈥媕.鈥媋ctbio.鈥?009.鈥?2.鈥?41 CrossRef PubMed
    Borcherding J, Pickhardt C, Winter HV, Becker JS (2008) Migration history of North Sea houting (Coregonus oxyrinchus L.) caught in Lake IJsselmeer (The Netherlands) inferred from scale transects of Sr-88 : Ca-44 ratios. Aquat Sci 70:47鈥?6. doi:10.鈥?007/鈥媠00027-007-0952-8 CrossRef
    Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30鈥?8. doi:10.鈥?139/鈥媐00-177 CrossRef
    Campbell LA, Bottom DL, Volk EC, Fleming IA (2015) Correspondence between scale morphometrics and scale and otolith chemistry for interpreting juvenile salmon life histories. Trans Am Fish Soc 144:55鈥?7. doi:10.鈥?080/鈥?0028487.鈥?014.鈥?63253 CrossRef
    Castonguay M, FitzGerald GJ (1982) Critique de la m茅thode de distinction entre poissons anadromes et dulcicoles de la m锚me esp猫ce par la teneur en strontium de leurs 茅cailles. Can J Fish Aquat Sci 39:1423鈥?425. doi:10.鈥?139/鈥媐82-191 CrossRef
    Cazalbou S, Eichert D, Ranz X, Drouet C, Combes C, Harmand MF, Rey C (2005) Ion exchanges in apatites for biomedical application. J Mater Sci Mater Med 16:405鈥?09. doi:10.鈥?007/鈥媠10856-005-6979-2 CrossRef PubMed
    Clarke AD, Telmer KH, Shrimpton JM (2007) Elemental analysis of otoliths, fin rays and scales: a comparison of bony structures to provide population and life-history information for the Arctic grayling (Thymallus arcticus). Ecol Freshw Fish 16:354鈥?61. doi:10.鈥?111/鈥媕.鈥?600-0633.鈥?007.鈥?0232.鈥媥 CrossRef
    Courtemanche DA, Whoriskey FG, Bujold V, Curry RA (2005) A nonlethal approach using strontium in scales to distinguish periods of marine and freshwater residency of anadromous species. Can J Fish Aquat Sci 62:2443鈥?449. doi:10.鈥?139/鈥婩05-162 CrossRef
    Courtemanche DA, Whoriskey FG, Bujold V, Curry RA (2006) Assessing anadromy of brook char (Salvelinus fontinalis) using scale microchemistry. Can J Fish Aquat Sci 63:995鈥?006. doi:10.鈥?139/鈥婩06-009 CrossRef
    Coutant CC, Chen CH (1993) Strontium microstructure in scales of freshwater and estuarine striped bass (Morone saxatilis) detected by laser ablation mass spectrometry. Can J Fish Aquat Sci 50:1318鈥?323. doi:10.鈥?139/鈥媐93-149 CrossRef
    Crabtree RE (1995) Relationship between lunar phase and spawning activity of tarpon, Megalops atlanticus, with notes on the distribution of larvae. Bull Mar Sci 56:895鈥?99
    Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28:446鈥?53. doi:10.鈥?016/鈥婼8756-3282(01)00419-7 CrossRef PubMed
    Eek D, Bohlin T (1997) Strontium in scales verifies that sympatric sea-run and stream-resident brown trout can be distinguished by coloration. J Fish Biol 51:659鈥?61. doi:10.鈥?006/鈥媕fbi.鈥?997.鈥?487 CrossRef
    Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD (2008) Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanogr Mar Biol 46:297鈥?30
    Ennevor BC, Beames RM (1993) Use of lanthanide elements to mass mark juvenile salmonids. Can J Fish Aquat Sci 50:1039鈥?044. doi:10.鈥?139/鈥媐93-120 CrossRef
    Farrell AP, Hodaly AH, Wang S (2000) Metal analysis of scales taken from Arctic grayling. Arch Environ Contam Toxicol 39:515鈥?22. doi:10.鈥?007/鈥媠002440010135 CrossRef PubMed
    Flem B, Moen V, Grimstvedt A (2005) Trace element analysis of scales from four populations of Norwegian Atlantic salmon (Salmo salar L.) for stock identification using laser ablation inductively coupled plasma mass spectrometry. Appl Spectrosc 59:245鈥?51. doi:10.鈥?366/鈥?003702053085188鈥?/span> CrossRef PubMed
    Gauldie RW, Coote G, West IF, Mulligan KP (1991a) The morphology and chemistry of the scales of the orange roughy and the smooth and spiky oreo dories. Tissue Cell 23:677鈥?08. doi:10.鈥?016/鈥?040-8166(91)90023-M CrossRef PubMed
    Gauldie RW, West IF, Coote G (1991b) Seasonal and environmental codes in the chemistry of the scales of the hoki Macruronus novaezelandiae. Tissue Cell 23:489鈥?03. doi:10.鈥?016/鈥?040-8166(91)90007-G CrossRef PubMed
    Gausen D, Berg OK (1988) Strontium levels in scales and vertebrae of wild and hatchery-reared Atlantic salmon, Salmo salar L., smolts. Aquac Res 19:299鈥?04. doi:10.鈥?111/鈥媕.鈥?365-2109.鈥?988.鈥媡b00433.鈥媥 CrossRef
    Geffen AJ, Morales-Nin B, Perez-Mayol S, Cantarero-Roldan AM, Skadal J, Tovar-Sanchez A (2013) Chemical analysis of otoliths: cross validation between techniques and laboratories. Fish Res 143:67鈥?0. doi:10.鈥?016/鈥媕.鈥媐ishres.鈥?013.鈥?1.鈥?05 CrossRef
    Gillanders BM (2001) Trace metals in four structures of fish and their use for estimates of stock structure. Fish Bull 99:410鈥?19
    Gillanders BM (2005) Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuar Coast Shelf Sci 64:47鈥?7. doi:10.鈥?007/鈥媠002440010135 CrossRef
    Harrington Jr RW (1958) Morphometry and ecology of small tarpon, Megalops atlantica Valenciennes from transitional stage through onset of scale formation. Copeia 1958:1鈥?0CrossRef
    Hol谩 M, Kalvoda J, B谩bek O, Brzobohat媒 R, Holoubek I, Kanick媒 V, Skoda R (2009) LA-ICP-MS heavy metal analyses of fish scales from sediments of the oxbow lake certak of the morava river (Czech Republic). Environ Geol 58:141鈥?51. doi:10.鈥?007/鈥媠00254-008-1501-z CrossRef
    Hol谩 M, Kalvoda J, Nov谩kov谩 H, 艩koda R, Kanick媒 V (2011) Possibilities of LA-ICP-MS technique for the spatial elemental analysis of the recent fish scales: line scan vs. depth profiling. Appl Surf Sci 257:1932鈥?940. doi:10.鈥?016/鈥媕.鈥媋psusc.鈥?010.鈥?9.鈥?29 CrossRef
    Hutchinson JJ, Trueman CN (2006) Stable isotope analyses of collagen in fish scales: limitations set by scale architecture. J Fish Biol 69:1874鈥?880. doi:10.鈥?111/鈥媕.鈥?095-8649.鈥?006.鈥?1234.鈥媥 CrossRef
    Ikoma T, Kobayashi H, Tanaka J, Walsh D, Mann S (2003) Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J Struct Biol 142:327鈥?33. doi:10.鈥?016/鈥婼1047-8477(03)00053-4 CrossRef PubMed
    Kalvoda J, Nov谩k M, B谩bek O, Brzobohat媒 R, Hol谩 M, Holoubek I, Kanick媒 V, 艩koda R (2009) Compositional changes in fish scale hydroxylapatite during early diagenesis; an example from an abandoned meander. Biogeochemistry 94:197鈥?15. doi:10.鈥?007/鈥媠10533-009-9319-7 CrossRef
    Kennedy BP, Blum JD, Folt CL, Nislow KH (2000) Using natural strontium isotopic signatures as fish markers: methodology and application. Can J Fish Aquat Sci 57:2280鈥?292. doi:10.鈥?139/鈥媐00-206 CrossRef
    Kerr LA, Campana SE (2014) Chemical composition of fish hard parts as a natural marker of fish stocks. In: Cadrin SX, Kerr LA, Mariani S (eds) Stock identification methods, Second edn. Academic Press, San Diego, pp. 205鈥?34CrossRef
    Lapi LA, Mulligan TJ (1981) Salmon stock identification using a microanalytic technique to measure elements present in the freshwater growth region of scales. Can J Fish Aquat Sci 38:744鈥?51. doi:10.鈥?139/鈥媐81-101 CrossRef
    Limburg KE, Walther BD, Lu ZL, Jackman G, Mohan J, Walther Y, Nissling A, Weber PK, Schmitt AK (2015) In search of the dead zone: use of otoliths for tracking fish exposure to hypoxia. J Mar Syst 141:167鈥?78. doi:10.鈥?016/鈥媕.鈥媕marsys.鈥?014.鈥?2.鈥?14 CrossRef
    Longerich HP, Jackson SE, Gunther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal Atom Spectrom 11:899鈥?04. doi:10.鈥?039/鈥婮A9961100899 CrossRef
    Luo JG, Ault JS (2012) Vertical movement rates and habitat use of Atlantic tarpon. Mar Ecol Prog Ser 467:167鈥?80. doi:10.鈥?354/鈥媘eps09957 CrossRef
    Luo J, Ault JS, Larkin MF, Humston R, Olson DB (2008) Seasonal migratory patterns and vertical habitat utilization of Atlantic tarpon (Megalops atlanticus) from satellite PAT tags. In: Ault JS (ed) Biology and management of the world tarpon and bonefish fisheries. CRC Press, Boca Raton, pp. 275鈥?99
    Meyer C, Papastamatiou Y, Holland K (2010) A multiple instrument approach to quantifying the movement patterns and habitat use of tiger (Galeocerdo cuvier) and Galapagos sharks (Carcharhinus galapagensis) at French Frigate Shoals, Hawaii. Mar Biol 157:1857鈥?868. doi:10.鈥?007/鈥媠00227-010-1457-x CrossRef
    Moreau G, Barbeau C (1979) Diff茅renciation de populations anadromes et dulcicoles de Grands Cor茅gones (Coregonus clupeaformis) par la composition min茅rale de leurs 茅cailles. J Fish Res Board Can 36:1439鈥?444. doi:10.鈥?139/鈥媐79-210 CrossRef
    Moreau G, Barbeau C, Frenette JJ, Saint-Onge J, Simoneau M (1983) Zinc, manganese, and strontium in opercula and scales of brook trout (Salvelinus fontinalis) as indicators of lake acidification. Can J Fish Aquat Sci 40:1685鈥?691. doi:10.鈥?139/鈥媐83-195 CrossRef
    Mugiya Y, Hakomori T, Hatsutori K (1991) Trace metal incorporation into otoliths and scales in the goldfish, Carassius auratus. Comp Biochem Physiol C 99:327. doi:10.鈥?016/鈥?742-8413(91)90250-W CrossRef
    Muhlfeld CC, Marotz B, Thorrold SR, FitzGerald JL (2005) Geochemical signatures in scales record stream of origin in westslope cutthroat trout. Trans Am Fish Soc 134:945鈥?59. doi:10.鈥?577/鈥婽04-029.鈥? CrossRef
    O鈥橳oole A, Danylchuk A, Goldberg T, Suski C, Philipp D, Brooks E, Cooke S (2011) Spatial ecology and residency patterns of adult great barracuda (Sphyraena barracuda) in coastal waters of the Bahamas. Mar Biol 158:2227鈥?237. doi:10.鈥?007/鈥媠00227-011-1728-1 CrossRef
    Olson OP, Watabe N (1980) Studies on formation and resorption of fish scales. Cell Tissue Res 211:303鈥?16. doi:10.鈥?007/鈥婤F00236451 CrossRef PubMed
    Ophel IL, Judd JM (1968) Marking fish with stable strontium. J Fish Res Board Can 25:1333鈥?337. doi:10.鈥?139/鈥媐68-119 CrossRef
    Pender PJ, Griffin RK (1996) Habitat history of barramundi Lates calcarifer in a north Australian river system based on barium and strontium levels in scales. Trans Am Fish Soc 125:679鈥?89. doi:10.鈥?577/鈥?548-8659(1996)125<0679:鈥婬HOBCI>2.鈥?.鈥婥O;2 CrossRef
    Pouilly M, Point D, Sondag F, Henry M, Santos RV (2014) Geographical origin of amazonian freshwater fishes fingerprinted by 87Sr/86Sr ratios on fish otoliths and scales. Environ Sci Technol 48:8980鈥?987. doi:10.鈥?021/鈥媏s500071w CrossRef PubMed
    Ramsay AL, Milner NJ, Hughes RN, McCarthy ID (2011) Comparison of the performance of scale and otolith microchemistry as fisheries research tools in a small upland catchment. Can J Fish Aquat Sci 68:823鈥?33. doi:10.鈥?139/鈥婩2011-027 CrossRef
    Ramsay A, Milner N, Hughes R, McCarthy I (2012) Fish scale 未15N and 未13C values provide biogeochemical tags of fish comparable in performance to element concentrations in scales and otoliths. Hydrobiologia 694:183鈥?96. doi:10.鈥?007/鈥媠10750-012-1143-8 CrossRef
    Ramsay AL, Hughes RN, Chenery SR, McCarthy ID (2015) Biogeochemical tags in fish: predicting spatial variations in strontium and manganese in Salmo trutta scales using stream water geochemistry. Can J Fish Aquat Sci 72:422鈥?33. doi:10.鈥?139/鈥媍jfas-2014-0055 CrossRef
    Rickards WL (1968) Ecology and growth of juvenile tarpon Megalops atlanticus in a Georgia salt marsh. Bull Mar Sci 18:220鈥?39
    Sauer GR, Watabe N (1989) Temporal and metal-specific patterns in the accumulation of heavy metals by the scales of Fundulus heteroclitus. Aquat Toxicol 14:233鈥?48. doi:10.鈥?016/鈥?166-445x(89)90018-0 CrossRef
    Snyder RJ, Mckeown BA, Colbow K, Brown R (1992) Use of dissolved strontium in scale marking of juvenile salmonids: effects of concentration and exposure time. Can J Fish Aquat Sci 49:780鈥?82. doi:10.鈥?139/鈥婩92-087 CrossRef
    Stein W, Brown-Peterson NJ, Franks JS, O'Connell MT (2012) Evidence of spawning capable tarpon (Megalops atlanticus) off the Louisiana coast. Gulf Caribb Res 24:73鈥?4CrossRef
    Sturrock AM, Trueman CN, Darnaude AM, Hunter E (2012) Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? J Fish Biol 81:766鈥?95. doi:10.鈥?111/鈥媕.鈥?095-8649.鈥?012.鈥?3372.鈥媥 CrossRef PubMed
    Sturrock AM, Hunter E, Milton JA, EIMF, Johnson RC, Waring CP, Trueman CN (2015) Quantifying physiological influences on otolith microchemistry. Methods Ecol Evol. doi:10.鈥?111/鈥?041-210X.鈥?2381
    Terra J, Dourado ER, Eon J-G, Ellis DE, Gonzalez G, Rossi AM (2009) The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. Phys Chem Chem Phys 11:568鈥?77. doi:10.鈥?039/鈥婤802841A CrossRef PubMed
    Thorrold SR, Shuttleworth S (2000) In situ analysis of trace elements and isotope ratios in fish otoliths using laser ablation sector field inductively coupled plasma mass spectrometry. Can J Fish Aquat Sci 57:1232鈥?242CrossRef
    Trueman CN (2013) Chemical taphonomy of biomineralized tissues. Palaeontology 56:475鈥?86. doi:10.鈥?111/鈥婸ala.鈥?2041 CrossRef
    Trueman CN, Moore A (2007) Use of the stable isotope composition of fish scales for monitoring aquatic ecosystems. In: Dawson TE, Siegwolf RTW (eds) Stable isotopes as indicators of ecological change. Academic Press, Burlington
    Trueman CN, MacKenzie KM, Palmer MR (2012) Identifying migrations in marine fishes through stable-isotope analysis. J Fish Biol 81:826鈥?47. doi:10.鈥?111/鈥媕.鈥?095-8649.鈥?012.鈥?3361.鈥媥 CrossRef PubMed
    van Coillie R, Rousseau A (1974) Composition min茅rale des 茅cailles du Catostomus commersoni issu de deux milieux diff茅rents: 茅tude par microscopie 茅lectronique analytique. J Fish Res Board Can 31:63鈥?6. doi:10.鈥?139/鈥媐74-009 CrossRef
    van Coillie R, Rousseau A (1975) Distribution min茅rale dans les 茅cailles des poissons d'eau douce et ses relations avec le milieu aquatique. Verh des Internat Verein Limnol 19:2440鈥?447
    Vazquez FJ, Arellano FE, Cirelli AF, Volpedo AV (2015) Monitoring of trace elements in silverside (Odontesthes bonariensis) from pampasic ponds, Argentina. Microchemical Journal 120:1鈥?. doi.10.鈥?016/鈥媕.鈥媘icroc.鈥?014.鈥?2.鈥?07
    Wade RA (1962) The biology of the tarpon, Megalops atlanticus, and the ox-eye, Megalops cyprinoides, with emphasis on larval development. Bull Mar Sci Gulf Caribb 12:545鈥?22
    Walther BD, Limburg KE (2012) The use of otolith chemistry to characterize diadromous migrations. J Fish Biol 81:796鈥?25. doi:10.鈥?111/鈥媕.鈥?095-8649.鈥?012.鈥?3371.鈥媥 CrossRef PubMed
    Walther B, Nims M (2015) Spatiotemporal variation of trace elements and stable isotopes in subtropical estuaries: I. Freshwater endmembers and mixing curves. Estuar Coast. Online at: doi:10.鈥?007/鈥媠12237-014-9881-7
    Wang LJ, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628鈥?669. doi:10.鈥?021/鈥婥r0782574 PubMed Central CrossRef PubMed
    Wang S, Brown R, Gray DJ (1994) Application of laser ablation-ICPMS to the spatially resolved micro-analysis of biological tissue. Appl Spectrosc 48:1321鈥?325. doi:10.鈥?366/鈥?003702944028001鈥?/span> CrossRef
    Wells BK, Bath GE, Thorrold SR, Jones CM (2000a) Incorporation of strontium, cadmium, and barium in juvenile spot (Leiostomus xanthurus) scales reflects water chemistry. Can J Fish Aquat Sci 57:2122鈥?129. doi:10.鈥?139/鈥媐00-178 CrossRef
    Wells BK, Thorrold SR, Jones CM (2000b) Geographic variation in trace element composition of juvenile weakfish scales. Trans Am Fish Soc 129:889鈥?00. doi:10.鈥?577/鈥?548-8659(2000)129<0889:鈥婫VITEC>2.鈥?.鈥婥O;2 CrossRef
    Wells BK, Rieman BE, Clayton JL, Horan DL, Jones CM (2003a) Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the Coeur d鈥橝lene River, Idaho: the potential application of hard-part chemistry to describe movements in freshwater. Trans Am Fish Soc 132:409鈥?24. doi:10.鈥?577/鈥?548-8659(2003)132<0409:鈥婻BWOAS>2.鈥?.鈥婥O;2 CrossRef
    Wells BK, Thorrold SR, Jones CM (2003b) Stability of elemental signatures in the scales of spawning weakfish, Cynoscion regalis. Can J Fish Aquat Sci 60:361鈥?69. doi:10.鈥?139/鈥媐03-028 CrossRef
    Wolff BA, Johnson BM, Landress CM (2013) Classification of hatchery and wild fish using natural geochemical signatures in otoliths, fin rays, and scales of an endangered catostomid. Can J Fish Aquat Sci 70:1775鈥?784. doi:10.鈥?139/鈥媍jfas-2013-0116 CrossRef
    Woodcock SH, Walther BD (2014) Trace elements and stable isotopes in Atlantic tarpon scales reveal movements across estuarine gradients. Fish Res 153:9鈥?7. doi:10.鈥?016/鈥媕.鈥媐ishres.鈥?014.鈥?1.鈥?03 CrossRef
    Woodcock SH, Munro AR, Crook DA, Gillanders BM (2012) Incorporation of magnesium into fish otoliths: determining contribution from water and diet. Geochim Cosmochim Acta 94:12鈥?1. doi:10.鈥?016/鈥媕.鈥媑ca.鈥?012.鈥?7.鈥?03 CrossRef
    Woodcock SH, Grieshaber CA, Walther BD (2013) Dietary transfer of enriched stable isotopes to mark otoliths, fin rays, and scales. Can J Fish Aquat Sci 70:1鈥?. doi:10.鈥?139/鈥媍jfas-2012-0389 CrossRef
    Yamada SB, Mulligan TJ (1982) Strontium marking of hatchery reared coho salmon, Oncorhynchus kisutch Walbaum, identification of adults. J Fish Biol 20:5鈥?. doi:10.鈥?111/鈥媕.鈥?095-8649.鈥?982.鈥媡b03889.鈥媥 CrossRef
    Zerbi A, Aliaume C, Joyeux JC (2001) Growth of juvenile tarpon in Puerto Rican estuaries. ICES J Mar Sci 58:87鈥?5. doi:10.鈥?006/鈥媕msc.鈥?000.鈥?992 CrossRef
  • 作者单位:Matthew Seeley (1)
    Nathaniel Miller (2)
    Benjamin Walther (1)

    1. Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA
    2. Jackson School of Geosciences, University of Texas at Austin, 23rd St, Austin, TX, 78759, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Nature Conservation
    Animal Systematics/Taxonomy/ Biogeography
    Zoology
    Hydrobiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5133
文摘
Fish scales may be used as nonlethal alternative structures to otoliths for establishing chemical time-series that trace migration and habitat use for euryhaline species such as Atlantic tarpon (Megalops atlanticus). We survey four decades of fish scale studies employing elemental analyses to show the wide diversity of aims, approaches and instrumentation. Analyses are mainly solution-based measurements of whole or subsampled scales or in situ solid-sampling techniques of specific growth regions. Although spot-based transects across scales have been employed for a handful of species, continuous elemental transects across scale growth increments are rare. Laser ablation based sampling methods that assay scale exteriors can be difficult to implement for species with natural topographic variations exceeding the focal range of the laser. These limitations may be overcome by performing laser ablation of scales in cross-section when scale thickness in the well-calcified external layer provides enough surface area for a laser transect. For this study, scales of Atlantic tarpon were embedded in epoxy and longitudinally cross-sectioned to expose the scale growth record of the external layer. Laser ablation ICP-MS was used to quantify continuous profiles of element:Ca ratios across scale growth increments. The analytes surveyed (Mg, P, Ca, Mn, Sr, and Ba) were consistently above the limits of detection (LODs) across each scale with the exception of Pb for one scale. Obtaining high resolution elemental life history profiles from scales will be essential for future efforts to use this structure as a non-lethal substitute for otoliths in Atlantic tarpon and other migratory fishes that possess scales with sufficiently thick calcified external layers to permit a cross-sectional approach. Keywords Atlantic tarpon Scales Otoliths ICP-MS Laser ablation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700