Sensitivity of Spring Phenology to Warming Across Temporal and Spatial Climate Gradients in Two Independent Databases
详细信息    查看全文
  • 作者:Benjamin I. Cook (1) (2)
    Elizabeth M. Wolkovich (3) (4)
    T. Jonathan Davies (5)
    Toby R. Ault (6)
    Julio L. Betancourt (7)
    Jenica M. Allen (8)
    Kjell Bolmgren (20) (9)
    Elsa E. Cleland (3)
    Theresa M. Crimmins (10)
    Nathan J. B. Kraft (4)
    Lesley T. Lancaster (11)
    Susan J. Mazer (12)
    Gregory J. McCabe (13)
    Brian J. McGill (14)
    Camille Parmesan (15) (16)
    Stephanie Pau (11)
    James Regetz (11)
    Nicolas Salamin (17)
    Mark D. Schwartz (18)
    Steven E. Travers (19)
  • 关键词:phenology ; climate responders ; NECTAR ; PEP725 ; sensitivity ; climate change
  • 刊名:Ecosystems
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:15
  • 期:8
  • 页码:1283-1294
  • 全文大小:902KB
  • 参考文献:1. Abu-Asab MS, Peterson PM, Shetler SG, Orli SS. 2001. Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodivers Conserv 10:597-12. CrossRef
    2. Augspurger CK. 2009. Spring 2007 warmth and frost: phenology, damage, and refoliation in a temperate deciduous forest. Funct Ecol 23:1031-. CrossRef
    3. Cook BI, Cook ER, Huth PC, Thompson JE, Forster A, Smiley D. 2008. A cross-taxa phenological dataset from Mohonk Lake, NY and its relationship to climate. Int J Climatol 28:1369-3. CrossRef
    4. Dunnell KL, Travers SE. 2011. Shifts in the flowering phenology of the Northern Great Plains: patterns over 100?years. Am J Bot 98:935-5. CrossRef
    5. Fitter AH, Fitter RSR. 2002. Rapid changes in flowering time in British plants. Science 296:1689. CrossRef
    6. Haylock MR, Hofstra N, Tank AMGK, Klok EJ, Jones PD, New M. 2008. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-006. J Geophys Res 113:D20119. CrossRef
    7. Hofstra N, Haylock M, New M, Jones PD. 2009. Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res 114:D21101. CrossRef
    8. Inouye DW. 2008. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353-2. CrossRef
    9. Jackson ST, Betancourt JL, Booth RK, Gray ST. 2009. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc Natl Acad Sci 106:19685-2. CrossRef
    10. Klok EJ, Klein Tank AMG. 2009. Updated and extended European dataset of daily climate observations. Int J Climatol 29:1182-1. CrossRef
    11. Koch E, Adler S, Lipa M, Ungersbock M, Zach-Hermann S (2010a) The Pan European phenological database PEP725. Berichte des Meteorologischen Institutes der Albrecht-Ludwigs-Universit?t Freiburg. In Proceedings of the 7th conference on Biometeorology.
    12. Koch E, Adler S, Ungersbock M, Zach-Hermann S (2010b) PEP725 Pan European Phenological Database. Geophys Res Abst 12.
    13. Leon AJ, Lee M, Andrade FH. 2001. Quantitative trait loci for growing degree days to flowering and photoperiod response in sunflower ( / Helianthus / annuus L.). Theor Appl Genet 102:497-03. CrossRef
    14. Loiselle BA, J?rgensen PM, Consiglio T, Jiménez I, Blake JG, Lohmann LG, Montiel OM. 2008. Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J Biogeogr 35:105-6.
    15. McMaster GS, Wilhelm WW. 1997. Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291-00. CrossRef
    16. Menzel A. 2000. Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76-1. CrossRef
    17. Menzel A, Fabian P. 1999. Growing season extended in Europe. Nature 397:659. CrossRef
    18. Menzel A, Sparks TH, Estrella N et al. 2006. European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969-6. CrossRef
    19. Moeller DA. 2004. Facilitative interactions among plants via shared pollinators. Ecology 85:3289-01. CrossRef
    20. Olsson K, ?gren J. 2002. Latitudinal population differentiation in phenology, life history and flower morphology in the perennial herb / Lythrum salicaria. J Evol Biol 15:983-6. CrossRef
    21. Palmer TM, Stanton ML, Young TP. 2003. Competition and coexistence: exploring mechanisms that restrict and maintain diversity within mutualist guilds. Am Nat 162:S63-9. CrossRef
    22. Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37-2. CrossRef
    23. Parry ML. 2007. Climate Change 2007: Impacts, adaptation and vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
    24. PEP725 (2010) Pep725: Pan European Phenology Data. http://www.zamg.ac.at/pep725/.
    25. Peterson TC, Vose RS. 1997. An overview of the Global Historical Climatology Network temperature database. Bull Am Meteorol Soc 78:2837-9. CrossRef
    26. Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J. 2006. Phenology of a northern hard-wood forest canopy. Glob Change Biol 12:1174-8. CrossRef
    27. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. 2003. Fingerprints of global warming on wild animals and plants. Nature 421:57-0. CrossRef
    28. Rosenzweig C, Karoly D, Vicarelli M et al. 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353-. CrossRef
    29. R?tzer T, Chmielewski FM. 2001. Phenological maps of Europe. Clim Res 18:249-7. CrossRef
    30. Scheifinger H, Menzel A, Koch E, Peter C, Ahas R. 2002. Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe. Int J Climatol 22:1739-5. CrossRef
    31. Scheifinger H, Menzel A, Koch E, Peter C. 2003. Trends of spring time frost events and phenological dates in Central Europe. Theor Appl Climatol 74:41-1. CrossRef
    32. Schwartz MD, Hanes JM. 2010. Intercomparing multiple measures of the onset of spring in eastern North America. Int J Climatol 30:1614-6. CrossRef
    33. Schwartz MD, Reiter BE. 2000. Changes in North American spring. Int J Climatol 20:929-2. CrossRef
    34. Schwartz MD, Ahas R, Aasa A. 2006. Onset of spring starting earlier across the Northern Hemisphere. Glob Change Biol 12:343-1. CrossRef
    35. Sherry RA, Zhou X, Gu S et al. 2007. Divergence of reproductive phenology under climate warming. Proc Natl Acad Sci 104:198. CrossRef
    36. Smith JW. 1915. Phenological dates and meteorological data recorded by Thomas Mikesell at Wauseon, Fulton County, Ohio. Mon Weather Rev Suppl 2:21-3.
    37. Sparks TH, Górska-Zajaczkowska M, Wojtowicz W, Tryjanowski P. (2010) Phenological changes and reduced seasonal synchrony in western Poland. Int J Biometeorol 55:1-.
    38. Stinchcombe JR, Weinig C, Ungerer M et al. 2004. A latitudinal cline in flowering time in / Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc Natl Acad Sci 101:4712. CrossRef
    39. Travers SE, Dunnell K. 2009. First-flowering dates of plants in the Northern Great Plains. Ecology 90:2332. CrossRef
    40. Trivedi MR, Berry PM, Morecroft MD, Dawson TP. 2008. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob Change Biol 14:1089-03. CrossRef
    41. Walther GR. 2009. Two steps forward, one step back. Funct Ecol 23:1029-0. CrossRef
    42. Walther GR, Post E, Convey P et al. 2002. Ecological responses to recent climate change. Nature 416:389-5. CrossRef
    43. Wetherill K (2000) Plant phenology transects. Tech. rep., Sevilleta Long Term Ecological Research Site.
    44. Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, Davis CC. 2008. Phylogenetic patterns of species loss in Thoreaus woods are driven by climate change. Proc Natl Acad Sci 105:17029. CrossRef
    45. Wright V (2001) Prairies phenology. Tech. rep., Konza Environmental Education Program.
    46. Zimmerman JK, Wright SJ, Calderon O, Pagan MA, Paton S. 2007. Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance. J Trop Ecol 23:231-1. CrossRef
  • 作者单位:Benjamin I. Cook (1) (2)
    Elizabeth M. Wolkovich (3) (4)
    T. Jonathan Davies (5)
    Toby R. Ault (6)
    Julio L. Betancourt (7)
    Jenica M. Allen (8)
    Kjell Bolmgren (20) (9)
    Elsa E. Cleland (3)
    Theresa M. Crimmins (10)
    Nathan J. B. Kraft (4)
    Lesley T. Lancaster (11)
    Susan J. Mazer (12)
    Gregory J. McCabe (13)
    Brian J. McGill (14)
    Camille Parmesan (15) (16)
    Stephanie Pau (11)
    James Regetz (11)
    Nicolas Salamin (17)
    Mark D. Schwartz (18)
    Steven E. Travers (19)

    1. NASA Goddard Institute for Space Studies, New York, New York, USA
    2. Ocean and Climate Physics, Lamont-Doherty Earth Observatory, Palisades, New York, USA
    3. Division of Biological Sciences, University of California-San Diego, La Jolla, California, USA
    4. Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
    5. Department of Biology, McGill University, Montreal, Quebec, Canada
    6. National Center for Atmospheric Research, Boulder, Colorado, USA
    7. U.S. Geological Survey, Tucson, Arizona, USA
    8. Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
    20. Swedish National Phenology Network, Swedish University of Agricultural Sciences, Asa, Sweden
    9. Department of Biology, Theoretical Population Ecology and Evolution Group, Lund University, Lund, Sweden
    10. USA National Phenology Network, Tucson, Arizona, USA
    11. National Center for Ecological Analysis and Synthesis, Santa Barbara, California, USA
    12. Department of Ecology, Evolution and Marine Biology, University of California-Santa Barbara, Santa Barbara, California, USA
    13. U.S. Geological Survey, Denver Federal Center, Denver, Colorado, USA
    14. Ecology and Environmental Science, University of Maine, Orono, Maine, USA
    15. Integrative Biology, University of Texas, Austin, Texas, USA
    16. Marine Sciences Institute Portland Square, University of Plymouth, Plymouth, UK
    17. Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
    18. Department of Geography, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
    19. Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
  • ISSN:1435-0629
文摘
Disparate ecological datasets are often organized into databases post hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (for example, species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (for example, deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One—PEP725—has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other—NECTAR—includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and under-sampled systems outside of the temperature seasonal mid-latitudes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700