Proteome analysis of virus–host cell interaction: rabies virus replication in Vero cells in two different media
详细信息    查看全文
  • 作者:Sabine Kluge (1)
    Samia Rourou (2)
    Diana Vester (1)
    Samy Majoul (2)
    Dirk Benndorf (1)
    Yvonne Genzel (3)
    Erdmann Rapp (3)
    Héla Kallel (2)
    Udo Reichl (1) (3)
  • 关键词:Vero cells ; Rabies virus ; Virus–host cell interaction ; Cell culture engineering ; Quantitative proteomics
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:97
  • 期:12
  • 页码:5493-5506
  • 全文大小:628KB
  • 参考文献:1. Acton SL, Brodsky FM (1990) Predominance of clathrin light chain Lcb correlates with the presence of a regulated secretory pathway. J Cell Biol 111(4):1419-426
    2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54 CrossRef
    3. Burgoyne RD, Geisow MJ (1989) The annexin family of calcium-binding proteins. Cell Calcium 10(1):1-0 CrossRef
    4. Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68(3):283-91 CrossRef
    5. Critchley DR (2000) Focal adhesions—the cytoskeletal connection. Curr Opin Cell Biol 12(1):133-39 CrossRef
    6. dela Luz-Hernández KR, Rojas-del CL, Rabasa-Legón Y, Lage-Castellanos A, Castillo-Vitlloch A, Díaz J, Gaskell S (2008a) Metabolic and proteomic study of NS0 myeloma cell line following the adaptation to protein-free medium. J Proteomics 71(2):133-47 CrossRef
    7. dela Luz-Hernández KR, Rojas-del CL, Victores-Sarasola S, Lage-Castellanos A, Eyers C, Hart S, Castellanos-Serra L, Castillo-Vitlloch A, Gaskell S (2008b) Proteomic analysis of the adaptation of the host NS0 myeloma cell line to a protein-free medium. Biotecnol Apl 24:215-23
    8. Dhingra V, Li X, Liu Y, Fu ZF (2007) Proteomic profiling reveals that rabies virus infection results in differential expression of host proteins involved in ion homeostasis and synaptic physiology in the central nervous system. J Neurovirol 13(2):107-17 CrossRef
    9. Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nature Rev Mol Cell Biol 11(4):276-87 CrossRef
    10. Frazatti-Gallina NM, Mour?o-Fuches RM, Paoli RL, Silva ML, Miyaki C, Valentini EJ, Raw I, Higashi HG (2004) Vero-cell rabies vaccine produced using serum-free medium. Vaccine 23(4):511-17 CrossRef
    11. Genzel Y, Ritter JB, K?nig S, Alt R, Reichl U (2005) Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol Prog 21(1):58-9 CrossRef
    12. Genzel Y, Reichl U (2009) Continuous cell lines as a production system for influenza vaccines. Expert Rev Vaccines 8(12):1681-692
    13. Genzel Y, Dietzsch C, Rapp E, Schwarzer J, Reichl U (2010) MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation. Appl Microbiol Biotechnol 88(2):461-75
    14. Gerke V, Moss SE (1997) Annexins and membrane dynamics. Biochim Biophys Acta 1357(2):129-54 CrossRef
    15. G?rg A, Obermaier C, Boguth G, Csordas A, Diaz JJ, Madjar JJ (1997) Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis 18(3-):328-37 CrossRef
    16. G?rg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21(6):1037-053 CrossRef
    17. Hubbard MJ, McHugh NJ, Carne DL (2000) Isolation of ERp29, a novel endoplasmic reticulum protein, from rat enamel cells—evidence for a unique role in secretory-protein synthesis. Eur J Biochem 267(7):1945-956 CrossRef
    18. Ivanov I, Yabukarski F, Ruigrok RWH, Jamin M (2011) Structural insights into the rhabdovirus transcription/replication complex. Virus Res 162:126-37 CrossRef
    19. Ivaska J, Pallari HM, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313(10):2050-062 CrossRef
    20. Janke R, Genzel Y, Wetzel M, Reichl U (2011) Effect of influenza virus infection on key metabolic enzyme activities in MDCK cells. BMC Proc 5(8):129 CrossRef
    21. Jayme DW, Smith SR (2000) Media formulation options and manufacturing process controls to safeguard against introduction of animal origin contaminants in animal cell culture. Cytotechnol 33(1-):27-6 CrossRef
    22. Kim JY, Kim YG, Han YK, Choi HS, Kim YH, Lee GM (2011) Proteomic understanding of intracellular responses of recombinant Chinese hamster ovary cells cultivated in serum-free medium supplemented with hydrolysates. Appl Microbiol Biotechnol 89(6):1917-928 CrossRef
    23. Knull HR, Walsh JL (1992) Association of glycolytic-enzymes with the cytoskeleton. Curr Top Cell Regul 33:15-0
    24. Krampe B, Swiderek H, Al-Rubeai M (2008) Transcriptome and proteome analysis of antibody-producing mouse myeloma NS0 cells cultivated at different cell densities in perfusion culture. Biotechnol Appl Biochem 50:133-41 CrossRef
    25. Kuystermans D, Krampe B, Swiderek H, Al-Rubeai M (2007) Using cell engineering and omic tools for the improvement of cell culture processes. Cytotechnol 53(1-):3-2 CrossRef
    26. Lee KH, Sburlati A, Renner WA, Bailey JE (1996) Deregulated expression of cloned transcription factor E2F-1 in Chinese hamster ovary cells shifts protein patterns and activates growth in protein-free medium. Biotechnol Bioeng 50(3):273-79 CrossRef
    27. Lohr V, Rath A, Genzel Y, Jordan I, Sandig V, Reichl U (2009) New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: studies on growth, metabolism and virus propagation. Vaccine 27(36):4975-982
    28. Merten OW, Kallel H, Manuguerra JC, Tardy-Panit M, Crainic R, Delpeyroux F, Van der Werf S, Perrin P (1999) The new medium MDSS2N, free of any animal protein supports cell growth and production of various viruses. Cytotechnol 30(1-):191-01 CrossRef
    29. Merten OW, Kierulff JV, Castignolles N, Perrin P (1994) Evaluation of the new serum-free medium (MDSS2) for the production of different biologicals: use of various cell lines. Cytotechnol 14(1):47-9 CrossRef
    30. Mitozo PA, de Souza LF, Loch-Neckel G, Flesch S, Maris AF, Figueiredo CP, dos Santos ARS, Farina M, Dafre AL (2011) A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism. Free Radical Biol Med 51(1):69-7 CrossRef
    31. Neermann J, Wagner R (1996) Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J Cell Physiol 166(1):152-69
    32. Ovadi J, Saks V (2004) On the origin of intracellular compartmentation and organized metabolic systems. Mol Cell Biochem 256(1-):5-2 CrossRef
    33. Ozawa M, Muramatsu T (1993) Reticulocalbin, a novel endoplasmic-reticulum resident Ca2+-binding protein with multiple EF-hand motifs and a carboxyl-terminal HDEL sequence. J Biol Chem 268(1):699-05
    34. Passini CA, Goochee CF (1989) Response of a mouse hybridoma cell-Line to heat-shock, agitation, and sparging. Biotechnol Prog 5(4):175-88 CrossRef
    35. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551-567 CrossRef
    36. Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5(3):177-87 CrossRef
    37. Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U (2010) Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling. BMC Syst Biol 4:61 CrossRef
    38. R?dig JV, Rapp E, Hoper D, Genzel Y, Reichl U (2011) Impact of host cell line adaptation on quasispecies composition and glycosylation of influenza A virus hemagglutinin. PLoS One 6(12):e27989 CrossRef
    39. R?dig JV, Rapp E, Bohne J, Kampe M, Kaffka H, Bock A, Genzel Y, Reichl U (2013) Impact of cultivation conditions on / N-glycosylation of influenza virus a hemagglutinin produced in MDCK cell culture. Biotechnol Bioeng. doi:10.1002/bit.24834
    40. Rourou S, van der Ark A, Majoul S, Trabelsi K, van der Velden T, Kallel H (2009a) A novel animal-component-free medium for rabies virus production in Vero cells grown on Cytodex 1 microcarriers in a stirred bioreactor. Appl Microbiol Biotechnol 85(1):53-3 CrossRef
    41. Rourou S, van der Ark A, van der Velden T, Kallel H (2007) A microcarrier cell culture process for propagating rabies virus in Vero cells grown in a stirred bioreactor under fully animal component free conditions. Vaccine 25(19):3879-889 CrossRef
    42. Rourou S, van der Ark A, van der Velden T, Kallel H (2009b) Development of an animal-component free medium for Vero cells culture. Biotechnol Prog 25(6):1752-761
    43. Sch?fer BW, Heizmann CW (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21(4):134-40
    44. Seow TK, Korke R, Liang RC, Ong SE, Ou K, Wong K, Hu WS, Chung MC (2001) Proteomic investigation of metabolic shift in mammalian cell culture. Biotechnol Prog 17(6):1137-144 CrossRef
    45. Smith JS, Yager PA, Baer GM (1973) A rapid tissue culture test for determining rabies neutralizing antibody. Monogr Ser World Health Organ 23:354-57
    46. Tew KD, Manevich Y, Grek C, Xiong Y, Uys J, Townsend DM (2011) The role of glutathione S-transferase P in signaling pathways and / S-glutathionylation in cancer. Free Radical Biol Med 51(2):299-13 CrossRef
    47. Trabelsi K, Rourou S, Loukil H, Majoul S, Kallel H (2006) Optimization of virus yield as a strategy to improve rabies vaccine production by Vero cells in a bioreactor. J Biotechnol 121(2):261-71 CrossRef
    48. van Zon A, Mossink MH, Houtsmuller AB, Schoester M, Scheffer GL, Scheper RJ, Sonneveld P, Wiemer EAC (2006) Vault mobility depends in part on microtubules and vaults can be recruited to the nuclear envelope. Exp Cell Res 312(3):245-55
    49. Vester D, Rapp E, Gade D, Genzel Y, Reichl U (2009) Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines. Proteomics 9(12):3316-327 CrossRef
    50. Vester D, Rapp E, Kluge S, Genzel Y, Reichl U (2010) Virus-host cell interactions in vaccine production cell lines infected with different human influenza A virus variants: a proteomic approach. J Proteomics 73(9):1656-669 CrossRef
    51. Wang X, Zhang S, Sun C, Yuan ZG, Wu X, Wang D, Ding Z, Hu R (2011) Proteomic profiles of mouse neuro N2a cells infected with variant virulence of rabies viruses. J Microbiol Biotechnol 21(4):366-73
    52. WHO (2005) Expert consultation on rabies. World Health Organ Tech Rep Ser 931:1-8
    53. Xing HM, Zhang SS, Weinheimer C, Kovacs A, Muslin AJ (2000) 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. EMBO J 19(3):349-58 CrossRef
    54. Zandi F, Eslami N, Soheili M, Fayaz A, Gholami A, Vaziri B (2009) Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus. Proteomics 9(9):2399-407 CrossRef
    55. Zhao J, Meyerkord CL, Du YH, Khuri FR, Fu HA (2011) 14-3-3 proteins as potential therapeutic targets. Sem Cell Dev Biol 22(7):705-12 CrossRef
    56. Zhou YB, Frey TK, Yang JJ (2009) Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 46(1):1-7 CrossRef
  • 作者单位:Sabine Kluge (1)
    Samia Rourou (2)
    Diana Vester (1)
    Samy Majoul (2)
    Dirk Benndorf (1)
    Yvonne Genzel (3)
    Erdmann Rapp (3)
    Héla Kallel (2)
    Udo Reichl (1) (3)

    1. Otto von Guericke University, Bioprocess Engineering, Universit?tsplatz 2, 39106, Magdeburg, Germany
    2. Viral Vaccines Research and Development Unit, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institute Pasteur de Tunis, 13 Place Pasteur, 1002, Tunis, Tunisia
    3. Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstra?e 1, 39106, Magdeburg, Germany
  • ISSN:1432-0614
文摘
The use of Vero cells for rabies vaccine production was recommended from the WHO in 2005. A controlled production process is necessary to reduce the risk of contaminants in the product. One step towards this is to turn away from animal-derived components (e.g. serum, trypsin, bovine serum albumin) and face a production process in animal component-free medium. In this study, a proteomic approach was applied, using 2-D differential gel electrophoresis and mass spectrometry to compare rabies virus propagation in Vero cells under different cultivation conditions in microcarrier culture. Protein alterations were investigated for uninfected and infected Vero cells over a time span from 1 to 8?days post-infection in two different types of media (serum-free versus serum-containing media). For mock-infected cells, proteins involved in stress response, redox status, protease activity or glycolysis, and protein components in the endoplasmic reticulum were found to be differentially expressed comparing both cultivation media at all sampling points. For virus-infected cells, additionally changes in protein expression involved in general cell regulation and in calcium homeostasis were identified under both cultivation conditions. The fact that neither of these additional proteins was identified for cells during mock infection, but similar protein expression changes were found for both systems during virus propagation, indicates for a specific response of the Vero cell proteome on rabies virus infection.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700