Almond shell activated carbon: adsorbent and catalytic support in the phenol degradation
详细信息    查看全文
  • 作者:Abdessalem Omri (1)
    Mourad Benzina (1)
  • 关键词:Almond shell activated carbon ; Adsorption ; Breakthrough ; Photocatalysis ; Phenol
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:186
  • 期:6
  • 页码:3875-3890
  • 全文大小:
  • 参考文献:1. Abdessalem, O., Ahmed, W., & Mourad, B. (2012). Adsorption of bentazon on activated carbon prepared from Lawsonia inermis wood: equilibrium, kinetic and thermodynamic studies. / Arab. J. Chem.. doi:10.1016/j.arabjc.2012.04.047 .
    2. Abdessalem, O., Mourad, B., & Najwa, A. (2013a). Preparation, modification and industrial application of activated carbon from almond shell. / J. Ind. Eng. Chem., 19(6), 2092-099.
    3. Abdessalem, O., Mourad, B., Wassim, T., & Najwa, A. (2013b). Adsorptive removal of humic acid on activated carbon prepared from almond shell: approach for the treatment of industrial phosphoric acid solution. / Desalin. Water Treat., 1-2.
    4. Akbal, F., & Onar, A. N. (2003). Photocatalytic degradation of phenol. / Environ. Monit. Assess., 83(3), 295-02. CrossRef
    5. Aksu, Z., & Gonen, F. (2004). Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. / Process Biochem., 39(5), 599-13. CrossRef
    6. Antonio, D. M., Marianna, I., Paul, D. P., Danielle, R., Hassan, K. O., & Michele, A. (2013). Adsorption of phenols from olive oil waste waters on layered double hydroxide, hydroxyaluminium-iron-co-precipitate and hydroxyaluminium-iron-montmorillonite complex. / Appl. Clay Sci., 80, 154-61.
    7. Ao, Y., Xu, Fu, J. D., Shen, X., & Yuan, C. (2008). Low temperature preparation of anatase TiO2-coated activated carbon. / Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312(2-3), 125-30. CrossRef
    8. Arbuj, S. S., Hawaldar, R. R., Mulik, U. P., Wani, B. N., Amalnerkar, D. P., & Waghmode, S. B. (2010). Preparation, characterization and photocatalytic activity of TiO2 towards methylene blue degradation. / Mater. Sci. Eng. B, 168(1-), 90-4. CrossRef
    9. Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S., & Sopian, K. (2012). Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. / Int. J. Electrochem. Sci., 7, 4871-888.
    10. Babu, B.V., & Gupta, S. (2004). Modeling and simulation for dynamic of packed bed adsorption. Proceedings of International Symposium & 57th Annual session of IIChE in Association with AIChE (CHEMCON-2004), Mumbai, December 27-0.
    11. Babu, B. V., & Gupta, S. (2005). Modeling and simulation of fixed bed adsorption column: effect of velocity variation. / J. Eng. Technol., 1, 60-6.
    12. Baetz, R. L., & Iangphasuk, M. (1997). Photocatalytic decolourization of reactive azo dye: a comparison between TiO2 and us photocatalysis. / Chemosphere, 35(3), 585-96. CrossRef
    13. Banat, F. A., Al-Bashir, B., Al-Asheh, S., & Hayajneh, O. (2000). Adsorption of phenol by bentonite. / Environ. Pollut., 107(3), 391-98. CrossRef
    14. Barrera, A., Tzompantzi, F., Padilla, J. M., Casillas, J. E., Jácome-Acatitla, G., Cano, M. E., & Gómez, R. (2014). Reusable PdO/Al2O3–Nd2O3 photocatalysts in the UV photodegradation of phenol. / Appl. Catal. B Environ., 144, 362-68. CrossRef
    15. Bódalo, A., Gómez, E., Hidalgo, A. M., Gómez, M., Murcia, M. D., & López, I. (2009). Nanofiltration membranes to reduce phenol concentration in wastewater. / Desalination, 245(1-), 680-86. CrossRef
    16. Bohart, G. S., & Adams, E. Q. (1920). Behavior of charcoal towards chlorine. / J. Chem. Soc., 42, 523-29. CrossRef
    17. Bouzid, J., Elouear, Z., Ksibi, M., Feki, M., & Montiel, A. (2008). A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes. / J. Hazard. Mater., 152(2), 838-45. CrossRef
    18. Calace, N., Nardi, E., Petronio, B. M., & Pietroletti, M. (2002). Adsorption of phenols by paper mill sludges. / Environ. Pollut., 118(3), 315-19. CrossRef
    19. Chu, K. H. (2004). Improved fixed-bed models for metal biosorption. / Chem. Eng. J., 97(2-), 233-39. CrossRef
    20. Cornelia, P., Georgeta, M., Adriana, P., Simona, G. M., & Robert, I. (2013). Adsorption of phenol and p-chlorophenol from aqueous solutions on poly (styrene-co-divinylbenzene) functionalized materials. / Chem. Eng. J., 222, 218-27. CrossRef
    21. Daneshvar, N., Salari, D., & Khataee, A. R. (2003). photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. / J. Photochem. Photobiol. A Chem., 157(1), 111-16. CrossRef
    22. Derylo-Marczewska, A., Marczewski, A. W., Winter, S., & Sternik, D. (2010). Studies of adsorption equilibria and kinetics in the systems: aqueous solution of dyes-mesoporous carbons. / Appl. Surf. Sci., 256(17), 5164-170. CrossRef
    23. Duan, X., Ma, F., Yuan, Z., Jin, L. X., & Yuan, Z. (2013). Electrochemical degradation of phenol in aqueous solution using PbO2 anode. / J. Taiwan. Inst. Chem. Eng., 44(1), 95-02. CrossRef
    24. Esplugas, S., Gimenez, J., Contreras, S., Pascual, E., & Rodriguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. / Water Res., 36(4), 1034-042. CrossRef
    25. Fang, H. H. P., & Chan, O. C. (1997). Toxicity of phenol towards anaerobic biogranules. / Water Res., 31(9), 2229-242. CrossRef
    26. Gülensoy, H. (1984). / Kompleksometrenin esaslar?ve kompleksometrik titrasyonlar (pp. 76-7). ?stanbul: Fatih Yay?nevi Matbaas?.
    27. Gupta, V. K., Ali, I., & Saini, V. K. (2004). Removal of chlorophenols from wastewater using red mud: an aluminum industry waste. / Environ. Sci Technol., 38(14), 4012-018. CrossRef
    28. Khan, A. R., Al-Bahri, T. A., & Al-Haddad, A. (1997). Adsorption of phenol based organic pollutants on activated carbon from multi-component dilute aqueous solutions. / Water Res., 31(8), 2102-112. CrossRef
    29. Knop, A., & Pilato, L. A. (1985). / Phenolic resins—Chemistry, Applications and Performance. Berlin: Springer.
    30. Ko, D. C., Porter, J. F., & McKay, G. (2001). Film-pore diffusion model for the fixed-bed sorption of copper and cadmium ions onto bone char. / Water Res, 35(16), 3876-886. CrossRef
    31. Li, Y., Li, L., Li, C., Chen, W., & Zeng, M. (2012). Carbon nanotube/titania composites prepared by a micro-emulsion method exhibiting improved photocatalytic activity. / Appl. Catal. A Gen., 427, 1-. CrossRef
    32. Liao, H. T., & Shian, C. Y. (2000). Analytical solution to an axial dispersion model for the fixed-bed adsorber. / AIChE J, 46(6), 1168-176. CrossRef
    33. Lin, S. H., Chiou, C. H., Chang, C. K., & Juang, R. S. (2011). Photocatalytic degradation of phenol on different phases of TiO2 particles in aqueous suspensions under UV irradiation. / J. Environ. Manag., 92(12), 3098-104. CrossRef
    34. Liu, S. X., Chen, X. Y., & Chen, X. (2007). A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. / J. Hazard. Mater., 143(1-), 143-63.
    35. Martín, R., Navalon, S., Alvaro, M., & Garcia, H. (2011). Optimized water treatment by combining catalytic Fenton reaction using diamond supported gold and biological degradation. / Appl. Catal. B Environ., 103(1-), 246-52. CrossRef
    36. Matos, J., Laine, J., Herrmann, J. M., Uzcategui, D., & Brito, J. L. (2007). Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation. / Appl. Catal. B Environ., 70(1-), 461-69. CrossRef
    37. Mourad, B., & Bellagi, A. (1990). Détermination des propriétés du réseau poreux de matériau argileux par les techniques d’adsorption d’azote et de porosimétrie au mercure en vue de leur utilisation pour la récupération des gaz. / Ann. Chim., 15, 315-35.
    38. Munesh, S., & Meena, R. C. (2012). Photocatalytic degradation of textile dye through an alternative photocatalyst methylene blue immobilized resin dowex 11 in presence of solar light. / Arch. Appl. Sci. Res., 4(1), 472-79.
    39. Nakamoto, K. (1986). / Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley.
    40. Neppolian, B., Choi, H. C., Sakthivel, S., Arabindoo, B., & Murugesan, V. (2002). Solar/UV-induced photocatalytic degradation of three commercial textile dyes. / J. Hazard. Mater., 89(2-), 303-17. CrossRef
    41. Ozkaya, B. (2006). Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. / J. Hazard. Mater., 129(1-), 158-63. CrossRef
    42. Smith, E. H., & Amini, A. (2000). Lead removal in fixed beds by recycled iron material. / J. Environ. Eng., 12, 58-5. CrossRef
    43. Spurr, R. A., & Myers, H. (1957). Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. / Anal. Chem., 29(5), 760-62. CrossRef
    44. Toyoda, M., Nanbu, Y., Nakazawa, Y., Hirano, M., & Inagaki, M. (2004). Effect of crystallinity of anatase on photoactivity for methylene blue decomposition in water. / Appl. Catal. B Environ., 49(4), 227-32. CrossRef
    45. Tsai, W. T., Lee, M. K., Su, T. Y., & Chang, Y. M. (2009). Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. / J. Hazard. Mater., 168(1), 269-75. CrossRef
    46. Velasco, L. F., Parra, J. B., & Ania, C. O. (2010). Role of activated carbon features on the photocatalytic degradation of phenol. / Appl. Surf. Sci., 256(17), 5254-258. CrossRef
    47. Vijayaraghavan, K., Jegan, J., Palanivelu, & Velan, K. M. (2004). Removal of nickel (II) ions from aqueous solution using crab shell particles in a packed bed up flow column. / J. Hazard. Mater., 113(1-), 223-30. CrossRef
    48. Wang, X., Hu, Z., Chen, Y., Zhao, G., Liu, Y., & Wen, Z. (2009a). A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. / Appl. Surf. Sci., 255(7), 3953-958. CrossRef
    49. Wang, X., Liu, Y., Hu, Z., Chen, Y., Liu, W., & Zhao, G. (2009b). Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities. / J. Hazard. Mater., 169(1-), 1061-067. CrossRef
    50. Wang, Z., Chen, Y., Zhou, C., Whiddon, R., Zhang, Y., Zhou, J., & Cen, K. (2011a). Decomposition of hydrogen iodide via wood-based activated carbon catalysts for hydrogen production. / Int. J. Hydrog. Energy, 36(1), 216-23. CrossRef
    51. Wang, B., Li, Q., Wang, W., Li, Y., & Zhai, J. (2011b). Preparation and characterization of Fe3+-doped TiO2 on fly ash cenospheres for photocatalytic application. / Appl. Surf. Sci., 257(8), 3473-479. CrossRef
    52. Yan, G., & Viraraghavan, T. (2001). Heavy metal removal in a biosorption column by immobilized / M. rouxii biomass. / Bioresour. Technol., 78(3), 243-49. CrossRef
    53. Yoon, Y. H., & Nelson, J. H. (1984). Application of gas adsorption kinetics. Part 1. A theoretical model for respirator cartridge service time. / Am. Ind. Hyg. Assoc. J., 45(8), 509-16. CrossRef
    54. Youji, L., Xiaoming, Z., Wei, C., Leiyong, L., Mengxiong, Z., Shidong, Q., & Shuguo, S. (2012). Photodecolorization of rhodamine B on tungsten-doped TiO2/activated carbon under visible-light irradiation. / J. Hazard. Mater., 227, 25-3.
    55. Yu, J., Yu, G. H. G. B., Cheng, Z., X, J., Yu, J. C., & Ho, W. K. (2003). The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. / J. Phys. Chem. B, 107(5), 13871-3879. CrossRef
    56. Yu, J., Zhou, M., Cheng, B., & Zhao, X. (2006). Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO2 powders. / J. Mol. Catal. A Chem., 246(1-), 176-84. CrossRef
  • 作者单位:Abdessalem Omri (1)
    Mourad Benzina (1)

    1. Laboratory of Water-Energy-Environment (LR3E), code: AD-10-02, National School of Engineers of Sfax, University of Sfax, BP W, 3038, Sfax, Tunisia
  • ISSN:1573-2959
文摘
In this work, two technologies are studied for the removal of phenol from aqueous solution: dynamic adsorption onto activated carbon and photocatalysis. Almond shell activated carbon (ASAC) was used as adsorbent and catalytic support in the phenol degradation process. The prepared catalyst by deposition of anatase TiO2 on the surface of activated carbon was characterized by scanning electron microscopy, sorption of nitrogen, X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, and pHZPC point of zero charge. In the continuous adsorption experiments, the effects of flow rate, bed height, and solution temperature on the breakthrough curves have been studied. The breakthrough curves were favorably described by the Yoon–Nelson model. The photocatalytic degradation of phenol has been investigated at room temperature using TiO2-coated activated carbon as photocatalyst (TiO2/ASAC). The degradation reaction was optimized with respect to the phenol concentration and catalyst amount. The kinetics of disappearance of the organic pollutant followed an apparent first-order rate. The findings demonstrated the applicability of ASAC for the adsorptive and catalytic treatment of phenol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700