Semi-empirical modeling of fuselage–rotor interference for comprehensive codes: the fundamental model
详细信息    查看全文
  • 作者:Berend G. van der Wall ; André Bauknecht ; Sung N. Jung
  • 关键词:HART?II ; Fuselage–rotor interference ; Comprehensive code ; Rotor dynamics ; Rotor aerodynamics ; Rotor wake
  • 刊名:CEAS Aeronautical Journal
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:5
  • 期:4
  • 页码:387-401
  • 全文大小:1,750 KB
  • 参考文献:1. Sheridan, P.F., Smith, R.P.: Interactional aerodynamics—a new challenge to helicopter technology. J. Am. Helicopter Soc. g class="a-plus-plus">25g>(1), 3-1 (1980)
    2. Huber, H., Polz, G.: Studies on blade-to-blade and rotor–fuselage–tail interferences. Aircr. Eng. Aerosp. Technol. g class="a-plus-plus">55g>(10), 2-2 (1983) g/10.1108/eb035904" target="_blank" title="It opens in new window">CrossRef
    3. Keys, C., Wiesner, R.: Guidelines for reducing helicopter parasite drag. J. Am. Helicopter Soc. g class="a-plus-plus">20g>(1), 31-0 (1975) g/10.4050/JAHS.20.31" target="_blank" title="It opens in new window">CrossRef
    4. Leishman, J.G., Bi, N.: Aerodynamic interactions between a rotor and a fuselage in forward flight. J. Am. Helicopter Soc. g class="a-plus-plus">35g>(3), 22-1 (1990) g/10.4050/JAHS.35.22" target="_blank" title="It opens in new window">CrossRef
    5. McVeigh, M.A., Grauer, W.K., Paisley, D.J.: Rotor/airframe interactions on tiltrotor aircraft. J. Am. Helicopter Soc. g class="a-plus-plus">35g>(3), 43-1 (1990) g/10.4050/JAHS.35.43" target="_blank" title="It opens in new window">CrossRef
    6. Betzina, M.D., Smith, C.A., Shinoda, P.: Rotor/body aerodynamic interactions. VERTICA g class="a-plus-plus">9g>(1), 65-1 (1985)
    7. Smith, C.A., Betzina, M.D.: Aerodynamic loads induced by a rotor on a body of revolution. J. Am. Helicopter Soc. g class="a-plus-plus">31g>(1), 29-6 (1986)
    8. Le Pape, A., Gatard, J., Monnier, J.-C.: Experimental investigations of rotor–fuselage aerodynamic interactions. J. Am. Helicopter Soc. g class="a-plus-plus">52g>(2), 99-09 (2007) g/10.4050/JAHS.52.99" target="_blank" title="It opens in new window">CrossRef
    9. Crouse, G.L., Leishman, G.J., Bi, N.: Theoretical and experimental study of unsteady rotor/body aerodynamic interactions. J. Am. Helicopter Soc. g class="a-plus-plus">37g>(1), 55-5 (1992) g/10.4050/JAHS.37.55" target="_blank" title="It opens in new window">CrossRef
    10. Berry, J., Bettschart, N.: Rotor/fuselage interaction: analysis and validation with experiment. In: 53rd Annual Forum of the American Helicopter Society, Virginia Beach, VA, 29?April-?May 1997
    11. Wilby, P.G., Young, C., Grant, J.: An investigation of the influence of fuselage flow field on rotor loads and the effects of vehicle configuration. VERTICA g class="a-plus-plus">3g>(2), 79-4 (1979)
    12. Rand, O.: Influence of interactional aerodynamics on helicopter rotor/fuselage coupled response in hover and forward flight. J. Am. Helicopter Soc. g class="a-plus-plus">34g>(4), 28-6 (1989) g/10.4050/JAHS.34.28" target="_blank" title="It opens in new window">CrossRef
    13. Mavris, D.N., Komerath, N.M., McMalhon, H.M.: Prediction of aerodynamic rotor–airframe interactions in forward flight. J. Am. Helicopter Soc. g class="a-plus-plus">34g>(4), 37-6 (1989) g/10.4050/JAHS.34.37" target="_blank" title="It opens in new window">CrossRef
    14. Schillings, J., Reinesch, R.: The effect of airframe aerodynamics on V-22 rotor loads. J. Am. Helicopter Soc. g class="a-plus-plus">34g>(1), 26-3 (1989) g/10.4050/JAHS.34.26" target="_blank" title="It opens in new window">CrossRef
    15. Lorber, P.F., Egolf, T.A.: An unsteady helicopter rotor–fuselage aerodynamic interaction analysis. J. Am. Helicopter Soc. g class="a-plus-plus">35g>(3), 32-2 (1990) g/10.4050/JAHS.35.32" target="_blank" title="It opens in new window">CrossRef
    16. Crouse, G.L.: Active control of vibratory airloads induced by helicopter rotor–fuselage interactions, AIAA-93-1363-CP, AIAA/ASME/ASCE/AHS/ASC 34th Structures, structural dynamics, and materials conference, La Jolla, CA, 19-1 April 1993.
    17. Quackenbush, T.R., Lam, C.-M.G., Bliss, D.B.: Vortex methods for the computational analysis of rotor/body interaction. J. Am. Helicopter Soc. g class="a-plus-plus">39g>(4), 14-4 (1994) g/10.4050/JAHS.39.14" target="_blank" title="It opens in new window">CrossRef
    18. Wachspress, D.A., Quackenbush, T.R., Boschitsch, A.H.: Rotorcraft interactional aerodynamics with fast vortex/fast panel methods. J. Am. Helicopter Soc. g class="a-plus-plus">48g>(4), 223-35 (2003) g/10.4050/JAHS.48.223" target="_blank" title="It opens in new window">CrossRef
    19. Kenyon, A.R., Brown, R.E.: Wake dynamics and rotor–fuselage aerodynamic interactions. J. Am. Helicopter Soc. g class="a-plus-plus">54g>(1), 012003--12003-8 (2009) g/10.4050/JAHS.54.012003" target="_blank" title="It opens in new window">CrossRef
    20. Yamauchi, G.K., Johnson, W.: Analysis of axi-symmetric body effects on rotor aerodynamics using modified slender body theory. In: AIAA-84-2204, AIAA 2nd applied aerodynamics conference, Seattle, WA, 21-3 August 1984
    21. Kelly, M.E., Brown, R.E.: The effect of blade aerodynamic modeling on the prediction of the blade airloads and the acoustic signature of the HART II rotor. In: 35th European Rotorcraft Forum, Hamburg, Germany, 22-5 September 2009
    22. Nam, H.J., Park, Y.M., Kwon, O.J.: Simulation of unsteady rotor–fuselage aerodynamic interaction using unstructured adaptive meshes. J. Am. Helicopter Soc. g class="a-plus-plus">51g>(2), 141-49 (2006) g/10.4050/JAHS.51.141" target="_blank" title="It opens in new window">CrossRef
    23. Renaud, T., O’Brien, D., Smith, M., Potsdam, M.: Evaluation of isolated fuselage and rotor–fuselage interaction using computational fluid dynamics. J. Am. Helicopter Soc. g class="a-plus-plus">53g>(1), 3-7 (2008) g/10.4050/JAHS.53.3" target="_blank" title="It opens in new window">CrossRef
    24. Wagner, S., Dietz, M., Embacher, M.: Influence of grid arrangements and fuselage on the numerical simulation of the helicopter aeromechanics in slow descent flight. In: 15th International Conference on Computational & Experimental Engineering and Sciences (ICCES08), Honolulu, HI, 17-2 March 2008
    25. Lim, J.W., Dimanlig, A.C.B.: The effect of fuselage and rotor hub on blade–vortex interaction airloads and rotor wakes, 36th European Rotorcraft Forum, Paris, France, 7- September 2010
    26. Jung, S.N., Sa, J.H., You, Y.H., Park, J.S., Park, S.H.: Loose fluid-structure coupled approach for a rotor in descent incorporating fuselage effects. J. Aircr. g class="a-plus-plus">50g>(4), 1016-026 (2013) g/10.2514/1.C031826" target="_blank" title="It opens in new window">CrossRef
    27. Lim, J.W., Wissink, A., Jayaraman, B., Dimanlig, A.: Helios adaptive mesh refinement for HART II rotor wake simulations. In: 68th Annual Forum of the American Helicopter Society, Ft. Worth, TX, 1-?May 2012
    28. Biava, M., Vivegano, L.: Simulation of a complete helicopter: a CFD approach to the study of interference effects. Aerosp. Sci. Technol. g class="a-plus-plus">19g>(1), 37-9 (2012) g/10.1016/j.ast.2011.08.006" target="_blank" title="It opens in new window">CrossRef
    29. van der Wall, B.G.: Extensions of prescribed wake modeling for helicopter rotor BVI noise investigations. CEAS Aeronaut. J. g class="a-plus-plus">3g>(1), 93-15 (2012) g/10.1007/s13272-012-0045-9" target="_blank" title="It opens in new window">CrossRef
    30. Johnson, W.: CAMRAD II. Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics. Johnson Aeronautics, Palo Alto, CA (1994)
    31. Stepniewski, W.Z., Keys, C.N.: Rotary-wing aerodynamics. ISBN 0-486-64647-5, Dover Publications, New York, NY (1984)
    32. Dreier, M.E.: Introduction to helicopter and tiltrotor flight simulation. ISBN-13:978-1-56347-873-4, AIAA Education Series, Reston, VA (2007)
    33. van der Wall, B.G.: Analytic formulation of unsteady profile aerodynamics and its application to simulation of rotors, ESA-TT-1244, (1992) (Translation of DLR-FB 90-8, 1990)
    34. van der Wall, B.G., Lim, J.W., Smith, M.J., Jung, S.N., Bailly, J., Baeder, J.D., Boyd, D.D.: An assessment of comprehensive code prediction state-of-the-art using the HART II international workshop data. In: 68th Annual Forum of the American Helicopter Society, Ft. Worth, TX, USA, 1-?May 2012
    35. G?pel, C., van der Wall, B.G.: über den Einflu? der Rotorversuchsst?nde ROTEST und ROTOS auf die Rotordurchstr?mung im DNW (About the influence of the rotor test rigs ROTEST and ROTOS on the flow in the rotor disk in DNW), DLR Mitt. 91-6 (1991)
    36. Kim, J.W., Park, S.H., Yu, Y.H.: Euler and Navier–Stokes simulations of helicopter rotor blade in forward flight using an overlapped grid solver, AIAA 2009-268, 19th AIAA CFD Conference, San Antonio, TX, 22-5 June 2009
    37. Park, S.H., Kwon, J.H.: Implementation of \(k-\omega\) turbulence models in an implicit multigrid method. AIAA J. g class="a-plus-plus">42g>(7), 1348-357 (2004) g/10.2514/1.2461" target="_blank" title="It opens in new window">CrossRef
    38. van der Wall, B.G.: A comprehensive rotary-wing database for code validation: the HART II international workshop, Aeronaut. J. R. Aeronaut. Soc. g class="a-plus-plus">115g>(1163), 91-02; erratum: g class="a-plus-plus">115g>(1166), 220 (2011)
    39. Jacob, H.G.: Rechnergestützte Optimierung statischer und dynamischer Systeme. Fachberichte Messen, Steuern, Regeln, Band 6; ISBN: 3-540-11641-9, Springer (1982)
    40. Leishman, J.G.: Principles of helicopter aerodynamics. ISBN 0-521-66060-2, Cambridge University Press, Cambridge, UK (2001)
  • 作者单位:Berend G. van der Wall (1)
    André Bauknecht (2)
    Sung N. Jung (3)
    Young H. You (3)

    1. Institute of Flight Systems, German Aerospace Center (DLR), Lilienthalplatz 7, 38108, Braunschweig, Germany
    2. Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR), Bunsenstra?e 10, 37073, G?ttingen, Germany
    3. Department of Aerospace Information Engineering, Konkuk University, Seoul, 143-701, Republic of Korea
  • ISSN:1869-5590
文摘
The flow field around the isolated HART?II fuselage is computed by a computational fluid dynamics code. Velocities normal to the rotor rotational plane are extracted in a volume around the rotor as a data basis. A simple semi-empirical analytical formulation of the fuselage-induced velocities, based on parameter identification from computational fluid dynamics or measured data, is developed for use in comprehensive rotor codes. This model allows the computation of fuselage–rotor interferences on the rotor blade element level. It also allows the prediction of the rotor wake geometry deformation due to the presence of the fuselage in both prescribed wake and free-wake codes. Its impact on rotor thrust, power and trim is evaluated analytically using blade element momentum theory and by DLR’s comprehensive rotor code.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700