Semi-empirical modeling of fuselage–rotor interference for comprehensive codes: influence of angle of attack
详细信息    查看全文
  • 作者:Berend G. van der Wall ; Jianping Yin
  • 关键词:Bo105 ; Fuselage–rotor interference ; Comprehensive code ; Rotor dynamics ; Rotor aerodynamics ; Rotor trim
  • 刊名:CEAS Aeronautical Journal
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:6
  • 期:4
  • 页码:557-574
  • 全文大小:3,393 KB
  • 参考文献:1.Sheridan, P.F., Smith, R.P.: Interactional aerodynamics: a new challenge to helicopter technology. J. Am. Helicopter Soc. 25(1), 3-1 (1980)
    2.Huber, H., Polz, G.: Studies on blade-to-blade and rotor–fuselage–tail interferences. Aircr. Eng. Aerosp. Technol. 55(10), 2-2 (1983)CrossRef
    3.Keys, C., Wiesner, R.: Guidelines for reducing helicopter parasite drag. J. Am. Helicopter Soc. 20(1), 31-0 (1975)CrossRef
    4.Stepniewski, W.Z., Keys, C.N.: Rotary-wing aerodynamics. ISBN 0-486-64647-5, Dover Publications (1984)
    5.Leishman, J.G.: Principles of helicopter aerodynamics. ISBN 0-521-66060-2, Cambridge University Press (2001)
    6.Dreier, M.E.: Introduction to helicopter and tiltrotor flight simulation. ISBN-13: 978-1-56347-873-4, AIAA Education Series, Reston, VA (2007)
    7.van der Wall, B.G., Bauknecht, A., Jung, S.N., You, Y.H.: Semi-empirical modeling of fuselage-rotor interference for comprehensive codes: the fundamental model. CEAS Aeronaut. J. 5(4), 387-01 (2014)CrossRef
    8.van der Wall, B.G.: A comprehensive rotary-wing database for code validation: the HART II International Workshop. Aeronaut. J. R. Aeronaut. Soc. 115(1163), 91-02; erratum: 115(1166), 220 (2011)
    9.Clark, D.R., Maskew, B.: Calculation of unsteady rotor blade loads and blade/fuselage interference. In: 2nd International conference on rotorcraft basic research, College Park, MD, 16-8 Feb 1988
    10.Clark, D.R., Maskew, B.: A re-examination of the aerodynamics of hovering rotors including the presence of the fuselage. In: International technical specialists-meeting on rotorcraft basic research, Atlanta, Georgia, 25-7 March 1991; also in: 47th Annual Forum of the American Helicopter Society, Phoenix, AZ, 6- May 1991
    11.Wachspress, D.A., Quackenbush, T.R., Boschitsch, A.H.: Rotorcraft interactional aerodynamics with fast vortex/fast panel methods. J. Am. Helicopter Soc. 48(4), 223-35 (2003)CrossRef
    12.Brown, R.E., Line, A.J., Ahlin, G.A.: Fuselage and tail-rotor interference effects on helicopter wake development in descending flight. In: 60th American Helicopter Society Annual Forum, Baltimore, MD, 7-0 June 2004
    13.Brown, R.E., Line, A.J.: Efficient high-resolution wake modeling using the vorticity transport equation. AIAA J. 43(7), 1434-443 (2005)CrossRef
    14.Kim, H.W., Kenyon, A.K., Duraisamy, K., Brown, R.E.: Interactional aerodynamics and acoustics of a propeller-augmented compound coaxial helicopter. In: American Helicopter Society Specialists-Conference on Aeromechanics, San Francisco, CA, 23-5 Jan 2008
    15.D’Andrea, A.: Development of a multi-processor unstructured panel code coupled with a CVC free wake model for advanced analyses of rotorcrafts and tiltrotors. In: 64th Annual Forum of the American Helicopter Society, Montreal, Canada, 29 April- May 2008
    16.Keller, J.D., Wachspress, D.A., Hoffler, J.C., Kachman, N.J., Nichols, J.: Application of a real time free wake induced velocity model in a Naval rotorcraft flight trainer. In: 67th Annual Forum of the American Helicopter Society, Virginia Beach, VA, 3- May 2011
    17.Quon, E.W., Smith, M.J., Whitehouse, G.R., Wachspress, D.A.: Unsteady reynolds-averaged Navier–Stokes-based hybrid methodologies for rotor–fuselage interaction. J. Aircr. 49(3), 961-65 (2012)CrossRef
    18.Yin, J.: Main rotor and tail rotor blade–vortex interaction noise under the influence of the fuselage. In: 38th European Rotorcraft Forum. Amsterdam, The Netherlands 4- Sept 2012
    19.Yin, J., van der Wall, B.G., Oerlemans, S.: Representative test results from HELINOVI aeroacoustic main rotor/tail rotor/fuselage test in DNW. In: 31st European Rotorcraft Forum. Florence, Italy 13-5 Sept 2005
    20.Jacob, H.G.: Rechnergestntzte optimierung statischer und dynamischer Systeme. Fachberichte Messen, Steuern, Regeln, Band 6; ISBN 3-540-11641-9, Springer Verlag (1982)
  • 作者单位:Berend G. van der Wall (1)
    Jianping Yin (2)

    1. German Aerospace Center (DLR), Institute of Flight Systems, Lilienthalplatz 7, 38108, Braunschweig, Germany
    2. German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Lilienthalplatz 7, 38108, Braunschweig, Germany
  • 刊物主题:Aerospace Technology and Astronautics;
  • 出版者:Springer Vienna
  • ISSN:1869-5590
文摘
The flow field around the isolated Bo105 fuselage including the tail boom and empennage is computed by an unsteady panel code. Velocities normal to the rotor rotational plane are extracted in a volume around the rotor as a data base. A simple semi-empirical analytical formulation of the fuselage-induced velocities, based on parameter estimation from the panel code data, is extended to include rotor shaft angles of attack from \(\alpha =-90^{\circ }\) (hover, vertical climb) to +90° (vertical descent) for use in comprehensive rotor codes. This model allows the computation of fuselage–rotor interferences on the rotor blade element level in a simplified form, thus eliminating the need for costly CFD computation (of this effect). It also allows the prediction of the rotor wake geometry deformation due to the presence of the fuselage in both prescribed wake and free-wake codes. Its impact on rotor thrust, power and trim is estimated analytically using blade element momentum theory. Keywords Bo105 Fuselage–rotor interference Comprehensive code Rotor dynamics Rotor aerodynamics Rotor trim

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700