Mobility and Interaction of Heavy Metals in a Natural Soil
详细信息    查看全文
  • 作者:Emanuela Bianchi Janetti (1)
    Ishai Dror (2)
    Monica Riva (1)
    Alberto Guadagnini (1)
    Xavier Sanchez-Vila (3)
    Brian Berkowitz (2)
  • 关键词:Heavy metal competition ; Column experiments ; Modeling
  • 刊名:Transport in Porous Media
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:97
  • 期:3
  • 页码:295-315
  • 全文大小:539KB
  • 参考文献:1. Altmann, R.S., Bourg, A.C.M.: Cadmium mobilization under conditions simulating anaerobic to aerobic transition in landfill leachate-polluted aquifer. Water Air Soil Pollut. 94, 385-92 (1997) CrossRef
    2. Antoniadis, V.A., McKinley, J.D., Zuhairi, W.Y.W.: Single-element and competitive metal mobility measured with column infiltration and batch tests. J. Environ. Qual. 36, 53-0 (2007) CrossRef
    3. Appelo, C.A.J., Postma, D.: A consistent model for surface complexation on birnessite ( $\text{ delta-MnO}_{2}$ ) and its application to a column experiment. Geochim. Cosmochim. Acta 64(22), 3931-931 (1999) CrossRef
    4. Atia, A.A., Donia, A.M., Elwakeel, K.Z.: Adsorption behaviour of non-transition metal ions on a synthetic chelating resin bearing iminoacetate functions. Sep. Purif. Technol. 43, 43-8 (2005)
    5. Barry, D.A., Starr, J.L., Parlange, J.-Y., Braddock, R.D.: Numerical analysis of the snow-plow effect. Soil Sci. Soc. Am. J. 47(5), 862-68 (1983) CrossRef
    6. Barrow, N.J., Cartes, P., Mora, M.L.: Modification to the Freundlich equation to describe anion sorption over a large range and to describe competition between pairs of ions. Eur. J. Soil Sci. 56, 601-06 (2005) CrossRef
    7. Barrow, N.J.: The description of sorption curves. Eur. J. Soil Sci. 59, 900-10 (2008). doi:10.1111/j.1365-2389.2008.01041.x CrossRef
    8. Bianchi, A., Petrangeli Papini, M., Corsi, A., Behra, P., Beccari, M.: Competitive transport of cadmium and lead through a natural porous medium: influence of the solid/liquid interface processes. Water Sci. Technol. 48, 9-6 (2003)
    9. Bianchi Janetti, E., Dror, I., Riva, M., Guadagnini, A., Berkowitz, B.: Estimation of single-metal and competitive sorption isotherms through maximum likelihood and model quality criteria. Soil Sci. Soc. Am. J. 76(4), 1229-245 (2012) CrossRef
    10. Brooks, S.C., Taylor, D.L., Jardine, P.M.: Reactive transport of EDTA-complexed cobalt in the presence of ferrihydrite. Geochim. Cosmochim. Acta 60(11), 1899-908 (1996) CrossRef
    11. Cornu, J.Y., Denaix, L., Schneider, A., Pellerin, S.: Temporal evolution of redox processes and free Cd dynamics in a metal-contaminated soil after rewetting. Chemosphere 70, 306-14 (2007) CrossRef
    12. Edery, Y., Guadagnini, A., Scher, H., Berkowitz, B.: Reactive transport in disordered media: Role of fluctuations in interpretation of laboratory experiments. Adv. Water Resour. (2012). doi:10.1016/j.advwatres.2011.12.008 (in press)
    13. Freundlich, H.M.F.: Over the sorption in solution. J. Phys. Chem. 57, 385-70 (1906)
    14. Figueira, M.M., Volesky, B., Azarian, K., Ciminelli, V.S.T.: Biosorption column performance with a metal mixture. Environ. Sci. Technol. 34, 4320-326 (2000) CrossRef
    15. Fontes, M.P.F., Gomes, P.C.: Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils. Appl. Geochem. 18, 795-04 (2003) CrossRef
    16. Gaines, G., Thomas, H.: Adsorption studies on clay minerals, ii, a formulation of the thermodynamics of exchange adsorption. J. Chem. Phys. 21, 714-18 (1953) CrossRef
    17. Gu, B.H., Wu, W.M., Ginder-Vogel, M.A., Yan, H., Fields, M.W., Zhou, J., Fendorf, S., Criddle, C.S., Jardine, P.M.: Bioreduction of uranium in a contaminated soil column. Environ. Sci. Technol. 39(13), 4841-847 (2005) CrossRef
    18. Harter, D., Naidu, R.: An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Sci. Soc. Am. J. 65, 597-12 (2001) CrossRef
    19. Hawari, A.H., Mulligan, C.N.: Effect of the presence of lead on the biosorption of copper, cadmium and nickel by anaerobic biomass. Process Biochem. 42, 1546-552 (2007) CrossRef
    20. Hinz, C., Selim, H.M.: Transport of Zn and Cd in soils—experimental evidence and modeling approaches. Soil Sci. Soc. Am. J. 58(5), 1316-327 (1994) CrossRef
    21. Inglett, P.W., Reddy, K.R., Corstanje, R.: Anaerobic soils. In: Hillel, D. (ed.) Encyclopedia of Soils in the Environment, pp. 71-8. Academic Press, New York (2005)
    22. Jakob, A., Pfingsten, W., Van Loon, L.: Effects of sorption competition on caesium diffusion through compacted argillaceous rock. Geochim. Cosmochim. Acta 73(9), 2441-456 (2009) CrossRef
    23. Kerner, M., Wallmann, K.: Remobilization events involving Cd and Zn from intertidal flat sediments in the Elbe estuary during the tidal cycle. Estuarine Coastal Shelf Sci. 35, 371-93 (1992) CrossRef
    24. Kittrick, J.A., Lee, F.Y.: Electron microprobe analysis of elements associated with zinc and copper in an oxidizing and an anaerobic soil environment. Soil Sci. Soc. Am. J. 48, 548-54 (1984) CrossRef
    25. Kratochvil, D., Volesky, B.: Advances in the biosorption of heavy metals. Trends Biotechnol. 16, 291-00 (1998) CrossRef
    26. Lack, J.G., Chaunduri, S.K., Kelly, S.D., Kemner, K.M., O’Connor, S.M., Coates, J.D.: Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II). App. Environ. Microbiol. 68, 2704-710 (2002) CrossRef
    27. Langmuir, I.: The sorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361-403 (1918) CrossRef
    28. Liao, L., Selim, H.M.: Competitive sorption of nickel and cadmium in different soils. Soil Sci. 174, 549-55 (2009) CrossRef
    29. Malandrino, M., Abollino, O., Giacomino, A., Aceto, M., Maentasti, E.: Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. J. Colloid Interface Sci. 299, 537-46 (2006) CrossRef
    30. MATLAB 2011: MATLAB Version 2011a. The MathWorks Inc., Natick (2011)
    31. Mao, X., Prommer, H., Barry, D.A., Langevin, C.D., Panteleit, B., Li, L.: Three-dimensional model for multi-component reactive transport with variable density groundwater flow. Environ. Modell. Softw. 21(5), 615-28 (2006) CrossRef
    32. McBride, M.B.: Environmental Chemistry of Soils. Oxford University Press, New York (1994)
    33. McCormick, P.V., Cairns, J.: Algae as indicators of environmental change. J. Appl. Phycol. 6(5-), 509-26 (1994). doi:10.1007/BF02182405 CrossRef
    34. Naja, G., Volesky, B.: Multi-metal biosorption in a fixed-bed flow-through column. Colloids Surf. A 281, 194-01 (2006) CrossRef
    35. Nitzsche, O., Meinrath, G., Merkel, B.: Database uncertainty as a limiting factor in reactive transport prognosis. J. Contam. Hydrol. 44, 223-37 (2000) CrossRef
    36. Patrick Jr, W.H., Khalid, R.D.: Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186, 53-5 (1974) CrossRef
    37. Porta, G., Riva, M., Guadagnini, A.: Upscaling solute transport in porous media in the presence of an irreversible bimolecular reaction. Adv. Water Resour. 35, 151-62 (2012). doi:10.1016/j.advwatres.2011.09.004 CrossRef
    38. Rubin, S., Dror, I., Berkowitz, B.: Experimental and modeling analysis of coupled non-Fickian transport and sorption in natural soils. J. Contam. Hydrol. 132, 28-6 (2012). doi:10.1016/j.jconhyd.2012.02.005 CrossRef
    39. Saha, U.K., Taniguchi, S., Sakurai, K.: Simultaneous adsorption of cadmium, zinc, and lead on hydroxyaluminum- and hydroxyaluminosilicate-montmorillonite complexes. Soil Sci. Soc. Am. J. 66, 117-28 (2002)
    40. Sanchez-Vila, X., Bolster, D.: An analytical approach to transient homovalent cation exchange problems. J. Hydrol. 378, 281-89 (2009) CrossRef
    41. Sanchez-Vila, X., Fernandez, D., Guadagnini, A.: Interpretation of column experiments of transport of solutes undergoing an irreversible bimolecular reaction using a continuum approximation. Water Resour. Res. 46, W12510 (2010). doi:10.1029/2010WR009539 CrossRef
    42. Selim, H.M., Buchter, B., Hinz, C., Ma, L.: Modeling the transport and retention of Cd in soils: multireaction and multicomponent approaches. Soil Sci. Soc. Am. J. 56(4), 1004-015 (1992) CrossRef
    43. Selim, H.M., Sparks, D.L.: Heavy Metals Release in Soils. CRC Press, Boca Raton (2001) CrossRef
    44. Seo, D.C., Yu, K., DeLaune, R.D.: Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: batch and column experiments. Chemosphere 73, 1757-764 (2008) CrossRef
    45. Seuntjens, P., Tirez, K., Simunek, J., van Genuchten, MTh, Cornelis, C., Geuzens, P.: Aging effects on cadmium transport in undisturbed contaminated sandy soil columns. J. Environ. Qual. 30, 1040-050 (2001) CrossRef
    46. Sheindorf, C., Rebhun, M., Sheintuch, M.: A Freundlich-type multicomponent isotherm. J. Colloid Interface Sci. 79, 136-41 (1981) CrossRef
    47. Sparks, D.L.: Environmental Soil Chemistry. Academic Press, San Diego (1995)
    48. Srivastava, P., Singh, B., Angove, M.: Competitive adsorption behavior of heavy metals on kaolinite. J. Colloid Interface Sci. 290, 28-8 (2005) CrossRef
    49. Starr, J.L., Parlange, J.-Y.: Dispersion in soil columns—snow plow effect. Soil Sci. Soc. Am. J. 43(3), 448-50 (1979) CrossRef
    50. Teuchies, J., Beauchard, O., Jacobs, S., Meire, P.: Evolution of sediment metal concentrations in a tidal marsh restoration project. Sci. Total Environ. 419, 187-95 (2012). doi:10.1016/j.scitotenv.2012.01.016
    51. Tsang, D.C.W., Lo, I.M.C.: Competitive Cu and Cd sorption and transport in soils: a combined batch kinetics, column, and sequential extraction study. Environ. Sci. Technol. 40, 6655-661 (2006) CrossRef
    52. Tyler, L.D., McBride, M.B.: Mobility and extractability of cadmium, copper, nickel, and zinc in organic and mineral soil columns. Soil Sci. 134, 198-05 (1982) CrossRef
    53. Valocchi, A., Street, R., Roberts, P.: Transport of ion-exchanging solutes in groundwater: chromatographic theory and field simulation. Water Resour. Res. 17(5), 1517-527 (1981) CrossRef
    54. Voegelin, A., Vulava, V.M., Kretzschmar, R.: Reaction-based model describing competitive sorption and transport of Cd, Zn, and Ni in an acidic soil. Environ. Sci. Technol. 35, 1651-657 (2001)
    55. Voegelin, A., Vulava, V.M., Kuhnen, F., Kretzschmar, R.: Multicomponent transport of major cations predicted from binary adsorption experiments. J. Contam. Hydrol. 46, 319-38 (2000) CrossRef
    56. Vulava, V., Kretzschmar, R., Rusch, U., Grolimund, D., Westall, J., Borkovec, M.: Cation competition in a natural subsurface material: modelling of sorption equilibria. Environ. Sci. Technol. 34, 2149-155 (2000) CrossRef
    57. Williams, J.D.H., Syers, J.K., Shulka, S.S., Harris, R.F.: Levels of inorganic and total phosphorus in lake sediments as related to other sediment parameters. Environ. Sci. Technol. 5, 1113-120 (1971) CrossRef
    58. Yang, R.T.: Gas separation by sorption processes. Butterworths, Boston (1987)
    59. Yaron, B., Dror, I., Berkowitz, B.: Soil-Subsurface Change: Chemical Pollutant Impacts. Springer, Heidelberg (2012) CrossRef
    60. Zhang, H., Selim, H.M.: Modeling competitive arsenate-phosphate retention and transport in soils: a multi-component multi-reaction approach. Soil Sci. Soc. Am. J. 71(4), 1267-277 (2007) CrossRef
  • 作者单位:Emanuela Bianchi Janetti (1)
    Ishai Dror (2)
    Monica Riva (1)
    Alberto Guadagnini (1)
    Xavier Sanchez-Vila (3)
    Brian Berkowitz (2)

    1. Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci 32, 20133, Milan, Italy
    2. Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, Israel
    3. Department of Geotechnical Engineering and Geosciences, Universitat Politècnica de Catalunya-Barcelona Tech, Jordi Girona 1-3, 08034, Barcelona, Spain
  • ISSN:1573-1634
文摘
We study the mobility and interaction under competing conditions observed for copper ( $\text{ Cu}^{2+}$ ) and zinc ( $\text{ Zn}^{2+}$ ) ions in the context of laboratory-scale experiments performed in natural soil columns. The experiments focus on the analysis of solute breakthrough curves (BTCs) obtained after injection of an aqueous solution containing similar concentrations of the two metal ions into a soil column fully saturated with double deionized water. Transport of the competing ions is tested for the same soil under aerobic and anaerobic conditions. Measurements show that the species with lower affinity for the soil, $\text{ Zn}^{2+}$ , migrates occupying all available adsorption sites, and is then progressively replaced by the ion with higher affinity, $\text{ Cu}^{2+}$ . The two ions are displaced in the system with different effective retardation. The slowest species replaces the sorbed ions, resulting in observed $\text{ Zn}^{2+}$ concentrations that display a non-monotonic behavior in time and which, for a certain period, are larger than the concentration supplied continuously at the inlet. In the absence of a complete geochemical characterization of the system, we show that the measured concentrations of both metals can be interpreted through simple models based on a set of coupled partial differential and algebraic equations, involving a small subset of aqueous and adsorbed species that are present in the system. Depending on the model considered, the relationship between aqueous and adsorbed ion concentrations is described at equilibrium by a Gaines–Thomas (GT) formulation, a competitive Sheindorf–Rebhun–Sheintuch (SRS) isotherm, or an Extended Langmuir (EL) isotherm, respectively. The GT formulation provides the best interpretation of the observed behavior among the models tested. We find that employing these simple models, which account only for the main governing reactive processes, allows reasonable estimation of the observed BTCs in experiments where only partial geochemical datasets are available.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700