K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics
详细信息    查看全文
  • 作者:Robert J. Berman
  • 刊名:Inventiones Mathematicae
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:203
  • 期:3
  • 页码:973-1025
  • 全文大小:900 KB
  • 参考文献:1.Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, 493–535 (1994)MathSciNet MATH
    2.Berman, R.J.: Berndtsson, B.: Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties. Ann de la Fac des Sci de Toulouse. Série VI. Math. 4(4), (2013)
    3.Berman, R.J., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to complex Monge-Ampere equations. Publications Math. de l’IHÉS, 117(1), 179–245 (2013)
    4.Berman, R.J., Eyssidieux, P., Boucksom, S., Guedj, V., Zeriahi, A.: Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties. arXiv:​1111.​7158
    5.Berman, R.J., Hisamoto, T., Nyström, D.W.: Calabi type functionals, test configurations and geodesic rays (article in preparation)
    6.Berman, R.J., Guenancia, H.: Kähler-Einstein metrics on stable varieties and log canonical pairs. Geom. Funct. Anal. 24(6), 1683–1730 (2014)
    7.Berman, R.J., Witt Nystrom, D.: Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons. arXiv:​1401.​8264
    8.Berndtsson, B.: Curvature of vector bundles associated to holomorphic fibrations. Ann. Math. 169, 531–560 (2009)CrossRef MathSciNet MATH
    9.Berndtsson, B.: Strict and nonstrict positivity of direct image bundles. Math. Zeitschrift 269(3–4), 1201–1218 (2011)CrossRef MathSciNet MATH
    10.Berndtsson, B.: A Brunn-Minkowski type inequality for Fano manifolds and the Bando- Mabuchi uniqueness theorem. Inventiones Math. arXiv:​1103.​0923 (2014)
    11.Berndtsson, B., Paun, M.: Bergman kernels and the pseudoeffectivity of relative canonical bundles. Duke Math. J. 145(2), 341–378 (2008)CrossRef MathSciNet MATH
    12.Berndtsson, B., Paun, M.: A Bergman kernel proof of the Kawamata subadjunction theorem. arXiv:​0804.​3884
    13.Campana, F., Guenancia, H., Păun, M.: Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. Annales Scientifiques de l’École Normale Supérieure. série 4 46, fascicule 6 (2013)
    14.Chen, X.: Space of Kähler metrics (IV): on the lower bound of the K-energy. arXiv:​0809.​4081v2
    15.Chen, X., Tang, Y.: Test configuration and geodesic rays. Géométrie différentielle, physique mathématique, mathématiques et société. I. Astérisque 321, 139–167 (2008)
    16.Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds, I: Approximation of metrics with cone singularities. J. Amer. Math. Soc. 28, 183–197 (2015)
    17.Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds, II: Limits with cone angle less than \(2\pi \) . J. Amer. Math. Soc. 28, 199–234 (2015)
    18.Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds, III: Limits as cone angle approaches \(2\pi \) and completion of the main proof. J. Amer. Math. Soc. 28, 235–278 (2015)
    19.Csiszár, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Cambridge University Press, Cambridge (2011)CrossRef
    20.Darvas, T., He, W.: Geodesic Rays and Kähler-Ricci Trajectories on Fano Manifolds. arXiv:​1411.​0774
    21.Demailly, J.-P., Kollar, J.: Semi-continuity of complex singularity exponents and Kähler- Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup. 34(4), 525–556 (2001)MathSciNet MATH
    22.Ding, W.Y.: Remarks on the existence problem of positive Kähler-Einstein metrics. Math. Ann 282, 463–471 (1988)CrossRef MathSciNet MATH
    23.Ding, W.Y., Tian, G.: Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110(2), 315–335 (1992)CrossRef MathSciNet MATH
    24.Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics. In: Northern California Symplectic Geometry Seminar, vol. 196 of Amer. Math. Soc. Transl. Ser. 2, pp. 13–33. Amer. Math. Soc., Providence, RI (1999)
    25.Donaldson, S.K.: Scalar curvature and stability of toric varities. J. Differ. Geom. 62, 289–349 (2002)MathSciNet MATH
    26.Donaldson, S. K.: Lower bounds on the Calabi functional. J. Differ. Geom. 70(3), 453–472 (2005)
    27.Donaldson, S.K.: Some numerical results in complex differential geometry. Pure Appl. Math. Q. 5(2), 571–618 (2009). (Special Issue: In honor of Friedrich Hirzebruch)CrossRef MathSciNet MATH
    28.Donaldson, S.K.: Kahler metrics with cone singularities along a divisor. Essays in mathematics and its applications, pp. 49–79. Springer, Heidelberg (2012)
    29.Donaldson, S.K., Sun, S.: Gromov-Hausdorff limits of Kahler manifolds and algebraic geometry. Acta Math. 213, 63–106
    30.Eyssidieux, P., Guedj, V., Zeriahi, A.: Singular Kähler-Einstein metrics. J. Am. Math. Soc. 22, 607–639 (2009)CrossRef MathSciNet MATH
    31.Greuel, G.M., Lossen, C., Shustin, E.: Introduction to Singularities and Deformations. Springer, New York (2007)MATH
    32.Guedj, V., Zeriahi, A.: Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15(4), 607–639 (2005)CrossRef MathSciNet MATH
    33.Guenancia, H., Păun, M.: Conic singularities metrics with prescribed Ricci curvature: the case of general cone angles along normal crossing divisors. arXiv:​1307.​6375
    34.Elkik, R.: Métriques sur les fibrés d’intersection. Duke Math. J. 61, 303–328 (1990)CrossRef MathSciNet MATH
    35.He, W.: \({\cal F}\) -functional and geodesic stability. arXiv:​1208.​1020
    36.Jeffres, T.D., Mazzeo, R., Rubinstein, Y.A.: Kähler-Einstein metrics with edge singularities. arXiv:​1105.​5216 (2011)
    37.Hartshorne, R.: Algebraic Geometry. Graduate Texts in Math, vol. 52. Springer-Verlag, Berlin (2006)
    38.Hisamoto, T.: On the limit of spectral measures associated to a test configuration. Preprint
    39.Kawamata, Y.: Characterization of abelian varieties. Compositio Math. 43(2), 253–276 (1981)MathSciNet MATH
    40.Kawakita, M.: Inversion of adjunction on log canonicity. Invent. Math. 167(1), 129–133 (2007)CrossRef MathSciNet MATH
    41.Kollar, J.: Singularities of pairs. Algebraic Geom—Santa Cruz. In: Proceedings of Symposia Pure Mathematics 62, Part 1, pp. 221–287. Amer. Math. Soc., Providence, RI (1995)
    42.Kreuzer, M., Skarke, H.: PALP: a package for analyzing lattice polytopes with applications to toric geometry. Comput. Phys. Commun. 157, 87–106 (2004)CrossRef MathSciNet MATH
    43.Li, C.: Remarks on logarithmic K-stability. arXiv:​math/​1104042
    44.Li, C., Xu, C.: Special test configurations and K-stability of Fano varieties. Ann. Math. 180, 197–232 (2014). arXiv:​1111.​5398 CrossRef MATH
    45.Mabuchi, T.: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, I. Invent. Math. 159(2), 225–243 (2005). (MR 2116275)CrossRef MathSciNet MATH
    46.Mabuchi, T.: K-stability of constant scalar curvature polarization. arXiv:​0812.​4093
    47.Mabuchi, T.: A stronger concept of K-stability. arXiv:​0910.​4617
    48.Moriwaki, A.: The continuity of Deligne’s pairing. Internat. Math. Res. Notices 19, 1057–1066 (1999)CrossRef MathSciNet
    49.Morrison, I.: GIT Constructions of Moduli Spaces of Stable Curves and Maps. Riemann Surfaces and Their Moduli Spaces, Surv. Differ. Geom., vol. 14, pp. 315–369. Int. Press, Somerville (2009)
    50.García, Muñóz: E. Fibrés d’intersection. Compositio Math. 124(3), 219–252 (2000)CrossRef MathSciNet MATH
    51.Kempf, G., Ness, L.: The Length of Vectors in Representation Spaces. Lecture Notes in Math., vol. 732, pp. 233–244. Springer, New York (1978)
    52.Nyström, D.W.: Test configurations and Okounkov bodies. Compos. Math. arXiv:​1001.​3286 (2010)
    53.Odaka, Y.: A generalization of the Ross-Thomas slope theory. Osaka J. Math. 50(1), 171–185 (2013)
    54.Odaka, Y., Sun, S.: Testing log K-stability by blowing up formalism. arXiv:​1112.​1353
    55.Odaka, Y., Spotti, S., Sun, S.: Compact moduli spaces of del pezzo surfaces and Kähler-Einstein metrics. arXiv:​1210.​0858
    56.Odaka, Y.: On the moduli of Kahler-Einstein Fano manifolds. Proceeding of Kinosaki algebraic geometry symposium. arXiv:​1211.​4833 (2013)
    57.Perelman, G.: The entropy formula for the Ricci flow and its geometric applications.  arXiv:​math/​0211159
    58.Paul, S., Tian, G.: CM stability and the generalized Futaki invariant I. arXiv:​math/​0605278 . CM stability and the generalized Futaki invariant II. Astérisque No. 328 (2009)
    59.Paul, S.T.: Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics. Ann. Math. 175(1), 255–296 (2012)CrossRef MATH
    60.Păun, M.: Takayama, S: Positivity of twisted relative pluricanonical bundles and their direct images. arXiv:​1409.​5504
    61.Phong, D.H., Ross, J., Sturm, J.: Deligne pairings and the Knudsen-Mumford expansion. J. Differ. Geom. 78(3), 475–496 (2008)MathSciNet MATH
    62.Phong, D.H., Sturm, J.: Test configurations for K-stability and geodesic rays. J. Symp. Geom. 5, 221–247 (2007)CrossRef MathSciNet MATH
    63.Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Moser-Trudinger inequality on Kähler- Einstein manifolds. Am. J. Math. 130(4), 1067–1085 (2008)CrossRef MathSciNet MATH
    64.Phong, D.H., Sturm, J.: Regularity of geodesic rays and Monge-Ampère equations. Proc. Am. Math. Soc. 138(10), 3637–3650 (2010)CrossRef MathSciNet MATH
    65.Phong, D.H., Sturm, J.: Lectures on stability and constant scalar curvature. Handbook of geometric analysis, No. 3, Adv. Lect. Math. (ALM), vol. 14, pp. 357–436. Int. Press, Somerville (2010)
    66.Ross, J., Thomas, R.: A study of the Hilbert-Mumford criterion for the stability of projective varieties. J. Algebraic Geom. 16, 201–255 (2007)CrossRef MathSciNet MATH
    67.Székelyhidi, G.: The partial \(C^{0}\) -estimate along the continuity method. arXiv:​1310.​8471 (2013)
    68.Stoppa, J.: K-stability of constant scalar curvature Kähler manifolds. Adv. Math. 221(4), 1397–1408 (2009)CrossRef MathSciNet MATH
    69.Stoppa, J.: A note on the definition of K-stability. arXiv:​1111.​5826
    70.Stoppa, J., Székelyhidi, G.: Relative K-stability of extremal metrics. J. Eur. Math. Soc. (JEMS) 13(4), 899–909 (2011)CrossRef MathSciNet MATH
    71.Tian, G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997)CrossRef MathSciNet MATH
    72.Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101(1), 101–172 (1990)CrossRef MathSciNet MATH
    73.Tian, G.: Existence of Einstein metrics on Fano manifolds. In: Metric and Differential Geometry Progress in Mathematics, vol. 297, Part 1, pp. 119–159 (2012)
    74.Tian, G., Zhu, X.: Convergence of Kähler-Ricci flow on Fano manifolds, II. arXiv:​1102.​4798
    75.Tian, G., Zhang, S.: Zhang, Z: Zhu, X: Supremum of Perelman’s entropy and Kähler-Ricci flow on a Fano manifold. arXiv:​1107.​4018
    76.Tosatti, V.: Families of Calabi-Yau manifolds and canonical singularities. arXiv:​1311.​4845 (2013)
    77.Zhang, S.: Heights and reductions of semi-stable varieties. Compositio Math. 104(1), 77–105 (1996)MathSciNet MATH
    78.Wang, C.-L.: Curvature properties of the Calabi-Yau moduli. Doc. Math. 8, 577–590 (2003)MathSciNet MATH
    79.Wang, X.: Height and GIT weight. Math. Res. Lett. 19(04), 909–926 (2012)CrossRef MathSciNet MATH
  • 作者单位:Robert J. Berman (1)

    1. Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1297
文摘
It is shown that any, possibly singular, Fano variety X admitting a Kähler-Einstein metric is K-polystable, thus confirming one direction of the Yau-Tian-Donaldson conjecture in the setting of \(\mathbb {Q}\)-Fano varieties equipped with their anti-canonical polarization. The proof is based on a new formula expressing the Donaldson-Futaki invariants in terms of the slope of the Ding functional along a geodesic ray in the space of all bounded positively curved metrics on the anti-canonical line bundle of X. One consequence is that a toric Fano variety X is K-polystable iff it is K-polystable along toric degenerations iff 0 is the barycenter of the canonical weight polytope P associated to X. The results also extend to the logarithmic setting and in particular to the setting of Kähler-Einstein metrics with edge-cone singularities. Applications to geodesic stability, bounds on the Ricci potential and Perelman’s \(\lambda \)-entropy functional on K-unstable Fano manifolds are also given.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700