Basic Relations Valid for the Bernstein Space $B^{p}_{\sigma}$ and Their Exte
详细信息    查看全文
  • 作者:Paul L. Butzer (1)
    Gerhard Schmeisser (2)
    Rudolf L. Stens (1)
  • 关键词:Non ; bandlimited functions ; Formulae with remainders ; Derivative ; free error estimates ; Sampling formulae ; Differentiation formulae ; Reproducing kernel formula ; General Parseval formula ; Bernstein’s inequality ; Nikolski?’s inequality ; 30H10 ; 41A17 ; 41A80 ; 42A38 ; 46E15 ; 65D25 ; 94A20
  • 刊名:Journal of Fourier Analysis and Applications
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:19
  • 期:2
  • 页码:333-375
  • 全文大小:821KB
  • 参考文献:1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington (1964)
    2. Bakan, A., Kaijser, S.: Hardy spaces for the strip. J. Math. Anal. Appl. 333(1), 347-64 (2007) CrossRef
    3. Bardaro, C., Butzer, P.L., Stens, R.L., Vinti, G.: Approximation error of the Whittaker cardinal series in terms of an averaged modulus of smoothness covering discontinuous signals. J. Math. Anal. Appl. 316(1), 269-06 (2006) CrossRef
    4. Boas, R.P.: The derivative of a trigonometric integral. J. Lond. Math. Soc. 12, 164-65 (1937) CrossRef
    5. Boas, R.P.: Entire Functions. Academic Press, New York (1954)
    6. Brown, J.L. Jr.: On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem. J. Math. Anal. Appl. 18, 75-4 (1967). Erratum ibid. 21, 699 (1968) CrossRef
    7. Butzer, P.L., Ferreira, P.J.S.G., Higgins, J.R., Schmeisser, G., Stens, R.L.: The sampling theorem, Poisson’s summation formula, general Parseval formula, reproducing kernel formula and the Paley–Wiener theorem for bandlimited signals—their interconnections. Appl. Anal. 90, 431-61 (2011) CrossRef
    8. Butzer, P.L., Dodson, M., Ferreira, P.J.S.G., Higgins, J.R., Schmeisser, G., Stens, R.L.: The generalized Parseval decomposition formula, the approximate sampling theorem, the approximate reproducing kernel formula, Poisson’s summation formula and Riemann’s zeta function—their interconnections for non-bandlimited functions (2012). Manuscript
    9. Butzer, P.L., Gessinger, A.: The approximate sampling theorem, Poisson’s sum formula, a decomposition theorem for Parseval’s equation and their interconnections. Ann. Numer. Math. 4, 143-60 (1997)
    10. Butzer, P.L., Higgins, J.R., Stens, R.L.: Classical and approximate sampling theorems: studies in the $L^{p}(\mathbb{R})$ and the uniform norm. J. Approx. Theory 137, 250-63 (2005) CrossRef
    11. Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation, vol.?1. Birkh?user, Basel (1971) CrossRef
    12. Butzer, P.L., Nessel, R.J.: Work of De La Vallée Poussin in approximation theory and its impact. In: Butzer, P.L., Mawhin, J., Vetro, P. (eds.) De La Vallée Poussin, Charles-Jean: Collected Works/?uvres Scientifiques, vol.?III, pp. 375-14. Académie Royale de Belgique/Circolo Matematico di Palermo, Brussels/Palermo (2004)
    13. Butzer, P.L., Scherer, K.: On the fundamental approximation theorems of D.?Jackson, S.N.?Bernstein, and theorems of M.?Zamansky and S.B.?Ste?kin. Aequ. Math. 3, 170-85 (1969) CrossRef
    14. Butzer, P.L., Scherer, K.: über die Fundamentals?tze der klassischen Approximationstheorie in abstrakten R?umen. In: Butzer, P.L., Sz.-Nagy, B. (eds.) Abstract Spaces and Approximation, Proc. Conf. Math. Research Center, Oberwolfach, 1968. ISNM, vol. 10, pp. 113-25. Birkh?user, Basel (1969)
    15. Butzer, P.L., Splettst??er, W., Stens, R.L.: The sampling theorems and linear prediction in signal analysis. Jahresber. Dtsch. Math.-Ver. 90, 1-0 (1988)
    16. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993) CrossRef
    17. Gervais, R., Rahman, Q.I., Schmeisser, G.: Simultaneous interpolation and approximation. In: Sahney, B.N. (ed.) Polynomial and Spline Approximation, pp. 203-23. Reidel, Dordrecht (1979)
    18. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 5th edn. Academic Press, Boston (1994)
    19. Hayman, W.K., Kennedy, P.B.: Subharmanic Functions, vol.?1. Academic Press, London (1976)
    20. Higgins, J.R.: Five short stories about the cardinal series. Bull. Am. Math. Soc. 12, 45-9 (1985) CrossRef
    21. Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis. Clarendon Press, Oxford (1996)
    22. Junggeburth, J., Scherer, K., Trebels, W.: Zur besten Approximation auf Banachr?umen mit Anwendungen auf ganze Funktionen. Forschungsber. Landes Nordrh.-Westfal. 2311, 51-5 (1973)
    23. Kincaid, D., Cheney, W.: Numerical Analysis, 2nd edn. Brooks/Cole Publishing Company, Pacific Grove (1996)
    24. Nikol’ski?, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer, Berlin (1975) CrossRef
    25. Rahman, Q.I., Schmeisser, G.: On a Gaussian quadrature formula for entire functions of exponential type. In: Collatz, L., Meinardus, G., Nürnberger, G. (eds.) Numerical Methods in Approximation Theory VIII, September–October, 1986. ISNM, vol. 81, pp. 169-83. Birkh?user, Basel (1987)
    26. Schmeisser, G.: Numerical differentiation inspired by a formula of R.P. Boas. J. Approx. Theory 160, 202-22 (2009) CrossRef
    27. Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev. 23, 165-24 (1981) CrossRef
    28. Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993) CrossRef
    29. Titchmarsh, E.C.: A note on Fourier transforms. J. Lond. Math. Soc. 2, 148-50 (1927) CrossRef
    30. Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, Oxford (1939)
    31. Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals, 2nd edn. Clarendon Press, Oxford (1948)
    32. Tschakaloff, L.: Zweite L?sung der Aufgabe 105. Jahresber. Dtsch. Math.-Ver. 43, 11-2 (1933)
    33. Valiron, G.: Sur la formule d’interpolation de Lagrange. Bull. Sci. Math. 49, 181-92, 203-24 (1925)
    34. Weiss, P.: An estimate of the error arising from misapplication of the sampling theorem. Not. Am. Math. Soc. 10, 351 (1963)
  • 作者单位:Paul L. Butzer (1)
    Gerhard Schmeisser (2)
    Rudolf L. Stens (1)

    1. Lehrstuhl A für Mathematik, RWTH Aachen University, 52056, Aachen, Germany
    2. Department of Mathematics, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
  • ISSN:1531-5851
文摘
There are various basic relations (equations and inequalities) that hold in Bernstein spaces $B_{\sigma}^{p}$ but are no longer valid in larger spaces. However, when a function f is in some sense close to a Bernstein space, one may expect that the corresponding relation is not violated drastically. It should hold with a remainder that involves the distance of f from $B_{\sigma}^{p}$ . First we establish a hierarchy of spaces that generalize the Bernstein spaces and are suitable for our studies. It includes Hardy spaces, Sobolev spaces, Lipschitz classes and Fourier inversion classes. Next we introduce an appropriate metric for describing the distance of a function belonging to such a space from a Bernstein space. It will be used for estimating remainders and studying rates of convergence. In the main part, we present the desired extensions. Our considerations include the classical sampling formula by Whittaker-Kotel’nikov-Shannon, the sampling formula of Valiron-Tschakaloff, the differentiation formula of Boas, the reproducing kernel formula, the general Parseval formula, Bernstein’s inequality for the derivative and Nikol’ski?’s inequality estimating the $l^{p}(\mathbb{Z})$ norm in terms of the $L^{p}(\mathbb{R})$ norm. All the remainders are represented in terms of the Fourier transform of f and estimated from above by the new metric. Finally we show that the remainders can be continued to spaces where a Fourier transform need not exist and can be estimated in terms of the regularity of?f.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700