Big bang bifurcations in von Bertalanffy's dynamics with strong and weak Allee effects
详细信息    查看全文
  • 作者:J. Leonel Rocha ; Abdel-Kaddous Taha ; Danièle Fournier-Prunaret
  • 关键词:Von Bertalanffy’s dynamics ; Strong and weak Allee effects ; Big bang bifurcation ; Extinction
  • 刊名:Nonlinear Dynamics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:84
  • 期:2
  • 页码:607-626
  • 全文大小:2,906 KB
  • 参考文献:1.von Bertalanffy, L.: A quantitative theory of organic growth. Hum. Biol. 10, 181–213 (1938)
    2.von Bertalanffy, L.: Quantitative laws in metabolism and growth. Q. Rev. Biol. 32, 217–231 (1957)CrossRef
    3.Essington, T.E., Kitchell, J.F., Walters, C.J.: The von Bertalanffy growth function, bioenergetics and the consumption rates of fish. Can. J. Fish. Aquat. Sci. 58, 2129–2138 (2001)CrossRef
    4.Cailliet, G.M., Smith, W.D., Mollet, H.F., Goldman, K.J.: Age and growth studies of chondrichthyan fishes: the need for consistency in terminology, verification, validation, and growth function fitting. Environ. Biol. Fish. 77, 211–228 (2006)CrossRef
    5.Karpouzi, V.S., Pauly, D.: Life-history patterns in marine birds. In: Palomares, M.L.D., et al. (Eds.) Fisheries Center Research Reports, Von Bertalanffy Growth Parameters of Non-Fish Marine Organisms, vol. 16, no. 10, pp. 27–43. The Fisheries Center, University of British Columbia, Canada (2008)
    6.Allee, W.C.: Animal Aggregations. University of Chicago Press, Chicago (1931)
    7.Elaydi, S., Sacker, R.J.: Population models with Allee effect: a new model. J. Biol. Dyn. 4, 397–408 (2010)MathSciNet CrossRef
    8.González-Olivares, E., González-Yañez, B., Mena-Lorca, J., Flores, J.D.: Uniqueness of limit cycles and multiple attractors in a Gause-type predator–prey model with nonmonotonic functional response and Allee effect on prey. Math. Biosci. Eng. 10, 345–367 (2013)MathSciNet CrossRef MATH
    9.Livadiotis, G., Elaydi, S.: General Allee effect in two-species population biology. J. Biol. Dyn. 6, 959–973 (2012)CrossRef
    10.Rocha, J.L., Aleixo, S.M.: Von Bertalanffy’s growth dynamics with strong Allee effect. Discuss. Math. Probab. Stat. 12, 35–45 (2012)MathSciNet MATH
    11.Rocha, J.L., Fournier-Prunaret, D., Taha, A.-K.: Strong and weak Allee effects and chaotic dynamics in Richards’ growths. Discret. Contin. Dyn. Syst. Ser. B 18(9), 2397–2425 (2013)MathSciNet CrossRef MATH
    12.Rocha, J.L., Fournier-Prunaret, D., Taha, A.-K.: Big bang bifurcations and Allee effect in Blumberg’s dynamics. Nonlin. Dyn. 77(4), 1749–1771 (2014)MathSciNet CrossRef MATH
    13.Schreiber, S.: Allee effects, extinctions and chaotic transients in simple population models. Theor. Popul. Biol. 64, 201–209 (2003)CrossRef MATH
    14.Boukal, D.S., Berec, L.: Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. J. Theor. Biol. 218, 375–394 (2002)MathSciNet CrossRef
    15.Aleixo, S.M., Rocha, J.L., Pestana, D.D.: Populational growth models proportional to beta densities with Allee effect. Am. Inst. Phys. 1124, 3–12 (2009)MathSciNet
    16.Aleixo, S.M., Rocha, J.L.: Generalized models from \(Beta(p,2)\) densities with strong Allee effect: dynamical approach. J. Comput. Inf. Technol. 3, 201–207 (2012)
    17.Rocha, J.L., Taha, A-K., Fournier-Prunaret, D.: Bifurcation structures in von Bertalanffy’s chaotic growth models with strong and weak Allee effects, submited (2015)
    18.Rocha, J.L., Aleixo, S.M., Caneco, A.: Chaotic dynamics and synchronization of von Bertalanffy’s growth models. In: Bourguignon, J.-P., et al. (eds.) Dynamics, Games and Science, CIM Series in Mathematical Sciences 1, Chap. 30, pp. 547–571. Springer (2015)
    19.Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer, New York (1993)CrossRef MATH
    20.Rocha, J.L., Aleixo, S.M.: Dynamical analysis in growth models: Blumberg’s equation. Discret. Contin. Dyn. Syst. Ser. B 18(3), 783–795 (2013)MathSciNet CrossRef MATH
    21.Rocha, J.L., Aleixo, S.M.: An extension of Gompertzian growth dynamics: Weibull and Fréchet models. Math. Biosci. Eng. 10(2), 379–398 (2013)MathSciNet CrossRef MATH
    22.Schreiber, S.: Chaos and population disappearances in simple ecological models. J. Math. Biol. 42, 239–260 (2001)MathSciNet CrossRef MATH
    23.Fujikawa, H., Kai, A., Morozomi, S.: A new logistic model for Escherichia coli growth at constant and dynamic temperatures. Food Microbiol. 21, 501–509 (2004)CrossRef
    24.Fournier-Prunaret, D.: The bifurcation structure of a family of degree one circle endomorphisms. Int. J. Bifurc. Chaos 1, 823–838 (1991)MathSciNet CrossRef MATH
    25.Mira, C.: Chaotic Dynamics. From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism. World Scientific, Singapore (1987)
    26.Mira, C., Gardini, L., Barugola, A., Cathala, J.-C.: Chaotic Dynamics in Two-Dimensional Noninvertible Maps. World Scientific, Singapore (1996)MATH
    27.Allam, R., Mira, C.: Crossroad area-dissymmetrical spring area-symmetrical spring area and double crossroad area-double spring area transitions. Int. J. Bifurc. Chaos 3, 429–435 (1993)MathSciNet CrossRef MATH
    28.Carcassès, J-P.: An algorithm to determine the nature and the transitions of communication areas generated by a one-dimensional map. In: Lampreia, J.P., et al. (eds.) Proceedings of European Conference on Iteration Theory (ECIT 1991), pp. 27–38. World Scientific, Singapore (1992)
    29.Rocha, J.L., Taha, A-K., Fournier-Prunaret, D.: From weak Allee effect to no Allee effect in Richards’ growth models. In: López-Ruiz, R., et al. (eds.) Nonlinear Maps and Their Applications, Proceedings in Mathematics and Statistics, vol. 112, Chp. 16, pp. 253–267. Springer (2015)
    30.Carcassès, J.-P.: Sur Quelques Structures Complexes de Bifurcations de Systemes Dynamiques, Doctorat de L’Universite Paul Sabatier, INSA, Toulouse (1990)
    31.Avrutin, V., Wackenhut G., Schanz, M.: On dynamical systems with piecewise defined system functions. In: Proceedings of International Conference Tools for Mathematical Modelling (Mathtols’99), St. Petersburg, pp. 4–20 (1999)
    32.Avrutin, V., Granados, A., Schanz, M.: Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional map. Nonlinearity 24, 2575–2598 (2011)MathSciNet CrossRef MATH
    33.Gardini, L., Avrutin, V., Sushko, I.: Codimension-2 border collision bifurcations in one-dimensional discontinuous piecewise smooth maps. Int. J. Bifurc. Chaos 24, 1450024 (2014)MathSciNet CrossRef MATH
    34.Rocha, J.L., Taha, A.-K., Fournier-Prunaret, D.: Symbolic dynamics and big bang bifurcation in Weibull–Gompertz–Fréchet’s growth models. Appl. Math. Inf. Sci. 9(5), 2377–2388 (2015)MathSciNet
    35.Rocha, J.L., Taha, A.-K., Fournier-Prunaret, D.: Explosion birth and extinction: double big bang bifurcations and Allee effect in Tsoularis–Wallace’s growth models. Discret. Contin. Dyn. Syst. Ser. B 20(9), 3131–3163 (2015)MathSciNet CrossRef MATH
  • 作者单位:J. Leonel Rocha (1)
    Abdel-Kaddous Taha (2)
    Danièle Fournier-Prunaret (3)

    1. ADM, ISEL-Instituto Sup. de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal
    2. INSA, University of Toulouse, 135 Avenue du Rangueil, 31077, Toulouse, France
    3. LAAS-CNRS, INSA, University of Toulouse, 7 Avenue du Colonel Roche, 31077, Toulouse, France
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
The main purpose of this work was to study population dynamic discrete models in which the growth of the population is described by generalized von Bertalanffy’s functions, with an adjustment or correction factor of polynomial type. The consideration of this correction factor is made with the aim to introduce the Allee effect. To the class of generalized von Bertalanffy’s functions is identified and characterized subclasses of strong and weak Allee’s functions and functions with no Allee effect. This classification is founded on the concepts of strong and weak Allee’s effects to population growth rates associated. A complete description of the dynamic behavior is given, where we provide necessary conditions for the occurrence of unconditional and essential extinction types. The bifurcation structures of the parameter plane are analyzed regarding the evolution of the Allee limit with the aim to understand how the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is realized. To generalized von Bertalanffy’s functions with strong and weak Allee effects is identified an Allee’s effect region, to which is associated the concepts of chaotic semistability curve and Allee’s bifurcation point. We verified that under some sufficient conditions, generalized von Bertalanffy’s functions have a particular bifurcation structure: the big bang bifurcations of the so-called box-within-a-box type. To this family of maps, the Allee bifurcation points and the big bang bifurcation points are characterized by the symmetric of Allee’s limit and by a null intrinsic growth rate. The present paper is also a significant contribution in the framework of the big bang bifurcation analysis for continuous 1D maps and unveil their relationship with the explosion birth and the extinction phenomena.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700