PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations
详细信息    查看全文
  • 作者:Souvik Kar (1)
    Amir Samii (1)
    Helmut Bertalanffy (1)

    1. International Neuroscience Institute
    ; Rudolf-Pichlmayr-Stra脽e 4 ; 30625 ; Hannover ; Germany
  • 关键词:Cerebral cavernous malformations ; Angiogenesis ; PTEN ; VEGF
  • 刊名:Neurosurgical Review
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:38
  • 期:2
  • 页码:229-237
  • 全文大小:516 KB
  • 参考文献:1. Batra, S, Lin, D, Recinos, PF, Zhang, J, Rigamonti, D (2009) Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol 5: pp. 659-670 CrossRef
    2. Bergametti, F, Denier, C, Labauge, P, Arnoult, M, Boetto, S, Clanet, M, Coubes, P, Echenne, B, Ibrahim, R, Irthum, B, Jacquet, G, Lonjon, M, Moreau, JJ, Neau, JP, Parker, F, Tremoulet, M, Tournier-Lasserve, E (2005) Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76: pp. 42-51 CrossRef
    3. Bertalanffy, H, Benes, L, Miyazawa, T, Alberti, O, Siegel, AM, Sure, U (2002) Cerebral cavernomas in the adult. Review of the literature and analysis of 72 surgically treated patients. Neurosurg Rev 25: pp. 1-53 CrossRef
    4. Bertalanffy, H, Kuhn, G, Scheremet, R, Seeger, W (1992) Indications for surgery and prognosis in patients with cerebral cavernous angiomas. Neurol Med Chir (Tokyo) 32: pp. 659-666 CrossRef
    5. Brazil, DP, Hemmings, BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26: pp. 657-664 CrossRef
    6. Cantley, LC (2002) The phosphoinositide 3-kinase pathway. Science 296: pp. 1655-1657 CrossRef
    7. Chan, AC, Drakos, SG, Ruiz, OE, Smith, AC, Gibson, CC, Ling, J, Passi, SF, Stratman, AN, Sacharidou, A, Revelo, MP, Grossmann, AH, Diakos, NA, Davis, GE, Metzstein, MM, Whitehead, KJ, Li, DY (2011) Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice. J Clin Invest 121: pp. 1871-1881 CrossRef
    8. Choorapoikayil, S, Weijts, B, Kers, R, Bruin, A, Hertog, J (2013) Loss of Pten promotes angiogenesis and enhanced vegfaa expression in zebrafish. Dis Model Mech 6: pp. 1159-1166 CrossRef
    9. Cortes Vela, JJ, Concepcion Aramendia, L, Ballenilla Marco, F, Gallego Leon, JI, Gonzalez-Spinola San Gil, J (2012) Cerebral cavernous malformations: spectrum of neuroradiological findings. Radiol 54: pp. 401-409
    10. Davis, S, Aldrich, TH, Jones, PF, Acheson, A, Compton, DL, Jain, V, Ryan, TE, Bruno, J, Radziejewski, C, Maisonpierre, PC, Yancopoulos, GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87: pp. 1161-1169 CrossRef
    11. Dibble, CF, Horst, JA, Malone, MH, Park, K, Temple, B, Cheeseman, H, Barbaro, JR, Johnson, GL, Bencharit, S (2010) Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate. PLoS ONE 5: pp. e11740 CrossRef
    12. Draheim, KM, Fisher, OS, Boggon, TJ, Calderwood, DA (2014) Cerebral cavernous malformation proteins at a glance. J Cell Sci 127: pp. 701-707 CrossRef
    13. Dubovsky, J, Zabramski, JM, Kurth, J, Spetzler, RF, Rich, SS, Orr, HT, Weber, JL (1995) A gene responsible for cavernous malformations of the brain maps to chromosome 7q. Hum Mol Genet 4: pp. 453-458 CrossRef
    14. Engelman, JA, Luo, J, Cantley, LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7: pp. 606-619 CrossRef
    15. Fidalgo, M, Fraile, M, Pires, A, Force, T, Pombo, C, Zalvide, J (2010) CCM3/PDCD10 stabilizes GCKIII proteins to promote Golgi assembly and cell orientation. J Cell Sci 123: pp. 1274-1284 CrossRef
    16. Fischer, A, Zalvide, J, Faurobert, E, Albiges-Rizo, C, Tournier-Lasserve, E (2013) Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol Med 19: pp. 302-308 CrossRef
    17. Fisher, OS, Boggon, TJ (2014) Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell Mol Life Sci 71: pp. 1881-1892 CrossRef
    18. Fisher, OS, Zhang, R, Li, X, Murphy, JW, Demeler, B, Boggon, TJ (2013) Structural studies of cerebral cavernous malformations 2 (CCM2) reveal a folded helical domain at its C-terminus. FEBS Lett 587: pp. 272-277 CrossRef
    19. Georgescu, MM, Kirsch, KH, Akagi, T, Shishido, T, Hanafusa, H (1999) The tumor-suppressor activity of PTEN is regulated by its carboxyl-terminal region. Proc Natl Acad Sci U S A 96: pp. 10182-10187 CrossRef
    20. Gingras, AR, Liu, JJ, Ginsberg, MH (2012) Structural basis of the junctional anchorage of the cerebral cavernous malformations complex. J Cell Biol 199: pp. 39-48 CrossRef
    21. Gingras, AR, Puzon-McLaughlin, W, Ginsberg, MH (2013) The structure of the ternary complex of Krev interaction trapped 1 (KRIT1) bound to both the Rap1 GTPase and the heart of glass (HEG1) cytoplasmic tail. J Biol Chem 288: pp. 23639-23649 CrossRef
    22. Glading, A, Han, J, Stockton, RA, Ginsberg, MH (2007) KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. J Cell Biol 179: pp. 247-254 CrossRef
    23. Gunel, M, Awad, IA, Anson, J, Lifton, RP (1995) Mapping a gene causing cerebral cavernous malformation to 7q11.2-q21. Proc Natl Acad Sci U S A 92: pp. 6620-6624 CrossRef
    24. Gunel, M, Laurans, MS, Shin, D, DiLuna, ML, Voorhees, J, Choate, K, Nelson-Williams, C, Lifton, RP (2002) KRIT1, a gene mutated in cerebral cavernous malformation, encodes a microtubule-associated protein. Proc Natl Acad Sci U S A 99: pp. 10677-10682 CrossRef
    25. Haasdijk, RA, Cheng, C, Maat-Kievit, AJ, Duckers, HJ (2012) Cerebral cavernous malformations: from molecular pathogenesis to genetic counselling and clinical management. Eur J Hum Genet 20: pp. 134-140 CrossRef
    26. Hamada, K, Sasaki, T, Koni, PA, Natsui, M, Kishimoto, H, Sasaki, J, Yajima, N, Horie, Y, Hasegawa, G, Naito, M, Miyazaki, J, Suda, T, Itoh, H, Nakao, K, Mak, TW, Nakano, T, Suzuki, A (2005) The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev 19: pp. 2054-2065 CrossRef
    27. Harel, L, Costa, B, Tcherpakov, M, Zapatka, M, Oberthuer, A, Hansford, LM, Vojvodic, M, Levy, Z, Chen, ZY, Lee, FS, Avigad, S, Yaniv, I, Shi, L, Eils, R, Fischer, M, Brors, B, Kaplan, DR, Fainzilber, M (2009) CCM2 mediates death signaling by the TrkA receptor tyrosine kinase. Neuron 63: pp. 585-591 CrossRef
    28. He, Y, Zhang, H, Yu, L, Gunel, M, Boggon, TJ, Chen, H, Min, W (2010) Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal 3: pp. ra26 CrossRef
    29. Hemmings, BA, Restuccia, DF (2012) PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol 4: pp. a011189 CrossRef
    30. Huang, J, Kontos, CD (2002) PTEN modulates vascular endothelial growth factor-mediated signaling and angiogenic effects. J Biol Chem 277: pp. 10760-10766 CrossRef
    31. Hwang, J, Pallas, DC (2014) STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 47: pp. 118-148 CrossRef
    32. Jakimovski, D., H. Schneider, K. Frei, L. N. Kennes and H. Bertalanffy (2014). Bleeding propensity of cavernous malformations: impact of tight junction alterations on the occurrence of overt hematoma. J Neurosurg: 1鈥?
    33. Jiang, BH, Liu, LZ (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102: pp. 19-65 CrossRef
    34. Johnson, EW, Iyer, LM, Rich, SS, Orr, HT, Gil-Nagel, A, Kurth, JH, Zabramski, JM, Marchuk, DA, Weissenbach, J, Clericuzio, CL, Davis, LE, Hart, BL, Gusella, JF, Kosofsky, BE, Louis, DN, Morrison, LA, Green, ED, Weber, JL (1995) Refined localization of the cerebral cavernous malformation gene (CCM1) to a 4-cM interval of chromosome 7q contained in a well-defined YAC contig. Genome Res 5: pp. 368-380 CrossRef
    35. Jones, N, Master, Z, Jones, J, Bouchard, D, Gunji, Y, Sasaki, H, Daly, R, Alitalo, K, Dumont, DJ (1999) Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem 274: pp. 30896-30905 CrossRef
    36. Kini, V, Chavez, A, Mehta, D (2010) A new role for PTEN in regulating transient receptor potential canonical channel 6-mediated Ca2+ entry, endothelial permeability, and angiogenesis. J Biol Chem 285: pp. 33082-33091 CrossRef
    37. Kleaveland, B, Zheng, X, Liu, JJ, Blum, Y, Tung, JJ, Zou, Z, Sweeney, SM, Chen, M, Guo, L, Lu, MM, Zhou, D, Kitajewski, J, Affolter, M, Ginsberg, MH, Kahn, ML (2009) Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat Med 15: pp. 169-176 CrossRef
    38. Labauge, P, Denier, C, Bergametti, F, Tournier-Lasserve, E (2007) Genetics of cavernous angiomas. Lancet Neurol 6: pp. 237-244 CrossRef
    39. Leblanc, GG, Golanov, E, Awad, IA, Young, WL (2009) Biology of vascular malformations of the brain. Stroke 40: pp. e694-e702 CrossRef
    40. Lee, JO, Yang, H, Georgescu, MM, Cristofano, A, Maehama, T, Shi, Y, Dixon, JE, Pandolfi, P, Pavletich, NP (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99: pp. 323-334 CrossRef
    41. Li, J, Yen, C, Liaw, D, Podsypanina, K, Bose, S, Wang, SI, Puc, J, Miliaresis, C, Rodgers, L, McCombie, R, Bigner, SH, Giovanella, BC, Ittmann, M, Tycko, B, Hibshoosh, H, Wigler, MH, Parsons, R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: pp. 1943-1947 CrossRef
    42. Li, X, Zhang, R, Zhang, H, He, Y, Ji, W, Min, W, Boggon, TJ (2010) Crystal structure of CCM3, a cerebral cavernous malformation protein critical for vascular integrity. J Biol Chem 285: pp. 24099-24107 CrossRef
    43. Liaw, D, Marsh, DJ, Li, J, Dahia, PL, Wang, SI, Zheng, Z, Bose, S, Call, KM, Tsou, HC, Peacocke, M, Eng, C, Parsons, R (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16: pp. 64-67 CrossRef
    44. Lin, C, Meng, S, Zhu, T, Wang, X (2010) PDCD10/CCM3 acts downstream of {gamma}-protocadherins to regulate neuronal survival. J Biol Chem 285: pp. 41675-41685 CrossRef
    45. Liquori, CL, Berg, MJ, Siegel, AM, Huang, E, Zawistowski, JS, Stoffer, T, Verlaan, D, Balogun, F, Hughes, L, Leedom, TP, Plummer, NW, Cannella, M, Maglione, V, Squitieri, F, Johnson, EW, Rouleau, GA, Ptacek, L, Marchuk, DA (2003) Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet 73: pp. 1459-1464 CrossRef
    46. Liquori, CL, Berg, MJ, Squitieri, F, Ottenbacher, M, Sorlie, M, Leedom, TP, Cannella, M, Maglione, V, Ptacek, L, Johnson, EW, Marchuk, DA (2006) Low frequency of PDCD10 mutations in a panel of CCM3 probands: potential for a fourth CCM locus. Hum Mutat 27: pp. 118 CrossRef
    47. Liu, JJ, Stockton, RA, Gingras, AR, Ablooglu, AJ, Han, J, Bobkov, AA, Ginsberg, MH (2011) A mechanism of Rap1-induced stabilization of endothelial cell鈥揷ell junctions. Mol Biol Cell 22: pp. 2509-2519 CrossRef
    48. Liu, W, Draheim, KM, Zhang, R, Calderwood, DA, Boggon, TJ (2013) Mechanism for KRIT1 release of ICAP1-mediated suppression of integrin activation. Mol Cell 49: pp. 719-729 CrossRef
    49. Maehama, T, Dixon, JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273: pp. 13375-13378 CrossRef
    50. Maisonpierre, PC, Suri, C, Jones, PF, Bartunkova, S, Wiegand, SJ, Radziejewski, C, Compton, D, McClain, J, Aldrich, TH, Papadopoulos, N, Daly, TJ, Davis, S, Sato, TN, Yancopoulos, GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: pp. 55-60 CrossRef
    51. Marsh, DJ, Dahia, PL, Zheng, Z, Liaw, D, Parsons, R, Gorlin, RJ, Eng, C (1997) Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 16: pp. 333-334 CrossRef
    52. Mathiesen, T, Edner, G, Kihlstrom, L (2003) Deep and brainstem cavernomas: a consecutive 8-year series. J Neurosurg 99: pp. 31-37 CrossRef
    53. Meng, G, Bai, C, Yu, T, Wu, Z, Liu, X, Zhang, J, Zhao, J (2014) The association between cerebral developmental venous anomaly and concomitant cavernous malformation: an observational study using magnetic resonance imaging. BMC Neurol 14: pp. 50 CrossRef
    54. Ng, I, Tan, WL, Ng, PY, Lim, J (2005) Hypoxia inducible factor-1alpha and expression of vascular endothelial growth factor and its receptors in cerebral arteriovenous malformations. J Clin Neurosci 12: pp. 794-799 CrossRef
    55. Park, JH, Lee, JY, Shin, DH, Jang, KS, Kim, HJ, Kong, G (2011) Loss of Mel-18 induces tumor angiogenesis through enhancing the activity and expression of HIF-1alpha mediated by the PTEN/PI3K/Akt pathway. Oncogene 30: pp. 4578-4589 CrossRef
    56. Patsoukis, N, Li, L, Sari, D, Petkova, V, Boussiotis, VA (2013) PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol 33: pp. 3091-3098 CrossRef
    57. Pearson, MA, Reczek, D, Bretscher, A, Karplus, PA (2000) Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101: pp. 259-270 CrossRef
    58. Riant, F, Bergametti, F, Ayrignac, X, Boulday, G, Tournier-Lasserve, E (2010) Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J 277: pp. 1070-1075 CrossRef
    59. Rosen, JN, Sogah, VM, Ye, LY, Mably, JD (2013) ccm2-like is required for cardiovascular development as a novel component of the Heg-CCM pathway. Dev Biol 376: pp. 74-85 CrossRef
    60. Sahoo, T, Goenaga-Diaz, E, Serebriiskii, IG, Thomas, JW, Kotova, E, Cuellar, JG, Peloquin, JM, Golemis, E, Beitinjaneh, F, Green, ED, Johnson, EW, Marchuk, DA (2001) Computational and experimental analyses reveal previously undetected coding exons of the KRIT1 (CCM1) gene. Genomics 71: pp. 123-126 CrossRef
    61. Sahoo, T, Johnson, EW, Thomas, JW, Kuehl, PM, Jones, TL, Dokken, CG, Touchman, JW, Gallione, CJ, Lee-Lin, SQ, Kosofsky, B, Kurth, JH, Louis, DN, Mettler, G, Morrison, L, Gil-Nagel, A, Rich, SS, Zabramski, JM, Boguski, MS, Green, ED, Marchuk, DA (1999) Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum Mol Genet 8: pp. 2325-2333 CrossRef
    62. Samii, M, Eghbal, R, Carvalho, GA, Matthies, C (2001) Surgical management of brainstem cavernomas. J Neurosurg 95: pp. 825-832 CrossRef
    63. Scheid, MP, Woodgett, JR (2001) PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2: pp. 760-768 CrossRef
    64. Schneider, H, Errede, M, Ulrich, NH, Virgintino, D, Frei, K, Bertalanffy, H (2011) Impairment of tight junctions and glucose transport in endothelial cells of human cerebral cavernous malformations. J Neuropathol Exp Neurol 70: pp. 417-429 CrossRef
    65. Semenza, GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: pp. 721-732 CrossRef
    66. Song, MS, Salmena, L, Pandolfi, PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13: pp. 283-296
    67. Stahl, S, Gaetzner, S, Voss, K, Brackertz, B, Schleider, E, Surucu, O, Kunze, E, Netzer, C, Korenke, C, Finckh, U, Habek, M, Poljakovic, Z, Elbracht, M, Rudnik-Schoneborn, S, Bertalanffy, H, Sure, U, Felbor, U (2008) Novel CCM1, CCM2, and CCM3 mutations in patients with cerebral cavernous malformations: in-frame deletion in CCM2 prevents formation of a CCM1/CCM2/CCM3 protein complex. Hum Mutat 29: pp. 709-717 CrossRef
    68. Steck, PA, Pershouse, MA, Jasser, SA, Yung, WK, Lin, H, Ligon, AH, Langford, LA, Baumgard, ML, Hattier, T, Davis, T, Frye, C, Hu, R, Swedlund, B, Teng, DH, Tavtigian, SV (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15: pp. 356-362 CrossRef
    69. Sugden, PH, McGuffin, LJ, Clerk, A (2013) SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions. Biochem J 454: pp. 13-30 CrossRef
    70. Sure, U, Battenberg, E, Dempfle, A, Tirakotai, W, Bien, S, Bertalanffy, H (2004) Hypoxia-inducible factor and vascular endothelial growth factor are expressed more frequently in embolized than in nonembolized cerebral arteriovenous malformations. Neurosurgery 55: pp. 663-669 CrossRef
    71. Sure, U, Butz, N, Schlegel, J, Siegel, AM, Wakat, JP, Mennel, HD, Bien, S, Bertalanffy, H (2001) Endothelial proliferation, neoangiogenesis, and potential de novo generation of cerebrovascular malformations. J Neurosurg 94: pp. 972-977 CrossRef
    72. Tian, T, Nan, KJ, Wang, SH, Liang, X, Lu, CX, Guo, H, Wang, WJ, Ruan, ZP (2010) PTEN regulates angiogenesis and VEGF expression through phosphatase-dependent and -independent mechanisms in HepG2 cells. Carcinogenesis 31: pp. 1211-1219 CrossRef
    73. Tsigkos, S, Zhou, Z, Kotanidou, A, Fulton, D, Zakynthinos, S, Roussos, C, Papapetropoulos, A (2006) Regulation of Ang2 release by PTEN/PI3-kinase/Akt in lung microvascular endothelial cells. J Cell Physiol 207: pp. 506-511 CrossRef
    74. Vanhaesebroeck, B, Guillermet-Guibert, J, Graupera, M, Bilanges, B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11: pp. 329-341 CrossRef
    75. Voss, K, Stahl, S, Hogan, BM, Reinders, J, Schleider, E, Schulte-Merker, S, Felbor, U (2009) Functional analyses of human and zebrafish 18-amino acid in-frame deletion pave the way for domain mapping of the cerebral cavernous malformation 3 protein. Hum Mutat 30: pp. 1003-1011 CrossRef
    76. Voss, K, Stahl, S, Schleider, E, Ullrich, S, Nickel, J, Mueller, TD, Felbor, U (2007) CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations. Neurogenetics 8: pp. 249-256 CrossRef
    77. Wen, S, Stolarov, J, Myers, MP, Su, JD, Wigler, MH, Tonks, NK, Durden, DL (2001) PTEN controls tumor-induced angiogenesis. Proc Natl Acad Sci U S A 98: pp. 4622-4627 CrossRef
    78. Weng, LP, Smith, WM, Dahia, PL, Ziebold, U, Gil, E, Lees, JA, Eng, C (1999) PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Res 59: pp. 5808-5814
    79. Whitehead, KJ, Chan, AC, Navankasattusas, S, Koh, W, London, NR, Ling, J, Mayo, AH, Drakos, SG, Jones, CA, Zhu, W, Marchuk, DA, Davis, GE, Li, DY (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15: pp. 177-184 CrossRef
    80. You, C, Sandalcioglu, IE, Dammann, P, Felbor, U, Sure, U, Zhu, Y (2013) Loss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med 17: pp. 407-418 CrossRef
    81. Zhang, J, Clatterbuck, RE, Rigamonti, D, Dietz, HC (2000) Mutations in KRIT1 in familial cerebral cavernous malformations. Neurosurgery 46: pp. 1272-1277 CrossRef
    82. Zhang, J, Rigamonti, D, Dietz, HC, Clatterbuck, RE (2007) Interaction between krit1 and malcavernin: implications for the pathogenesis of cerebral cavernous malformations. Neurosurgery 60: pp. 353-359 CrossRef
    83. Zhao, Y, Tan, YZ, Zhou, LF, Wang, HJ, Mao, Y (2007) Morphological observation and in vitro angiogenesis assay of endothelial cells isolated from human cerebral cavernous malformations. Stroke 38: pp. 1313-1319 CrossRef
    84. Zheng, X, Xu, C, Smith, AO, Stratman, AN, Zou, Z, Kleaveland, B, Yuan, L, Didiku, C, Sen, A, Liu, X, Skuli, N, Zaslavsky, A, Chen, M, Cheng, L, Davis, GE, Kahn, ML (2012) Dynamic regulation of the cerebral cavernous malformation pathway controls vascular stability and growth. Dev Cell 23: pp. 342-355 CrossRef
    85. Zhou, HJ, Tang, T, Cui, HJ, Yang, AL, Luo, JK, Lin, Y, Yang, QD, Li, XQ (2012) Thrombin-triggered angiogenesis in rat brains following experimental intracerebral hemorrhage. J Neurosurg 117: pp. 920-928 CrossRef
    86. Zhou, XP, Marsh, DJ, Hampel, H, Mulliken, JB, Gimm, O, Eng, C (2000) Germline and germline mosaic PTEN mutations associated with a Proteus-like syndrome of hemihypertrophy, lower limb asymmetry, arteriovenous malformations and lipomatosis. Hum Mol Genet 9: pp. 765-768 CrossRef
    87. Zhu, Y, Wloch, A, Wu, Q, Peters, C, Pagenstecher, A, Bertalanffy, H, Sure, U (2009) Involvement of PTEN promoter methylation in cerebral cavernous malformations. Stroke 40: pp. 820-826 CrossRef
    88. Zhu, Y, Wu, Q, Fass, M, Xu, JF, You, C, Muller, O, Sandalcioglu, IE, Zhang, JM, Sure, U (2011) In vitro characterization of the angiogenic phenotype and genotype of the endothelia derived from sporadic cerebral cavernous malformations. Neurosurgery 69: pp. 722-731 CrossRef
    89. Zhu, Y, Wu, Q, Xu, JF, Miller, D, Sandalcioglu, IE, Zhang, JM, Sure, U (2010) Differential angiogenesis function of CCM2 and CCM3 in cerebral cavernous malformations. Neurosurg Focus 29: pp. E1 CrossRef
    90. Zundel, W, Schindler, C, Haas-Kogan, D, Koong, A, Kaper, F, Chen, E, Gottschalk, AR, Ryan, HE, Johnson, RS, Jefferson, AB, Stokoe, D, Giaccia, AJ (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14: pp. 391-396
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Neurosurgery
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1437-2320
文摘
Cerebral cavernous malformations (CCM) are common vascular malformation of the brain and are associated with abnormal angiogenesis. Although the exact etiology and the underlying molecular mechanism are still under investigation, recent advances in the identification of the mutations in three genes and their interactions with different signaling pathways have shed light on our understanding of CCM pathogenesis. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is known to play a major role in angiogenesis. Studies have shown that the phosphatase and tensin homologue deleted on chromosome ten (PTEN), a tumor suppressor, is an antagonist regulator of the PI3K/Akt pathway and mediates angiogenesis by activating vascular endothelial growth factor (VEGF) expression. Here, we provide an update literature review on the current knowledge of the PTEN/PI3K/Akt/VEGF signaling in angiogenesis, more importantly in CCM pathogenesis. In addition to reviewing the current literatures, this article will also focus on the structural domain of the three CCM proteins and their interacting partners. Understanding the biology of these proteins with respect to their signaling counterpart will help to guide future research towards new therapeutic targets applicable for CCM treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700