Clock genes of mammalian cells: Practical implications in tissue culture
详细信息    查看全文
  • 作者:Bertrand Kaeffer (1)
    Lissia Pardini (1)
  • 关键词:clock ; circadian rhythm ; primary culture ; established cell line
  • 刊名:In Vitro Cellular & Developmental Biology - Animal
  • 出版年:2005
  • 出版时间:November 2005
  • 年:2005
  • 卷:41
  • 期:10
  • 页码:311-320
  • 全文大小:1408KB
  • 参考文献:1. Abizaid, A.; Mezei, G.; Sotonyi, P.; Horvath, T. L. Sex differences in adult suprachiamastic nucleus neurons emerging late prenatally in rats. Eur. J. Neurosci. 19: 2488鈥?490; 2004. CrossRef
    2. Akashi, M.; Nishida, E. Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev. 14: 645鈥?49; 2000.
    3. Akashi, M.; Tsuchiya, Y. T.; Yoshino, T.; Nishida, E. Control of intracellular dynamics of mammalian Period proteins by casein kinase I epsilon (CKIe) and CKIdelta in cultured cells. Mol. Cell. Biol. 22: 1693鈥?703; 2002. CrossRef
    4. Akhtar, R. A.; Reddy, A. B.; Maywood, E. S.; Clayton, J. D.; King, V. M.; Smith, A. G.; Gant, T. W.; Hastings, M. H.; Kyriacou, C. P. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12: 540鈥?50; 2002. CrossRef
    5. Akiyama, M.; Minami, Y.; Nakajima, T.; Moriya, T.; Shibata, S. Calcium and pituitary adenylate cyclase-activating polypeptide induced expression of circadian clock gene mPer1 in the mouse cerebellar granule cell culture. J. Neurochem. 78: 499鈥?08; 2001. CrossRef
    6. Albrecht, U.; Sun Z. S.; Eichele, G.; Lee, C. C.. A differential response of two putative mammalian circadian regulators / mper1 and / mper2, to light. Cell 91: 1055鈥?064; 1997. CrossRef
    7. Allen, G.; Rappe, J.; Earnest, D. J.; Cassone, V. M. Oscillating on borrowed time: diffusible signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity in cultured fibroblasts. J. Neurosci. 21: 7937鈥?943; 2001.
    8. Anderson, L. E.; Morris, J. E.; Sasser, L. B.; Stevens, R. G. Effect of constant light on DMBA mammary tumorigenesis in rats. Cancer Lett. 148: 121鈥?26; 2000. CrossRef
    9. Archer, S. N.; Robilliard, D. L.; Skene, D. J.; Smits, M.; Williams, A.; Arendt, J.; von Schantz, M. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26: 413鈥?15; 2003.
    10. Asai, M.; Yamaguchi, S.; Isejima, H.; Jonouchi, M.; Moriya, T.; Shibata, S.; Kobayashi, M.; Okamura, H. Visualization of mPer1 transcription in vitro: NMDA induces a rapid phase shift of mPer1 gene in cultured SCN. Curr. Biol. 11: 1524鈥?527; 2001. CrossRef
    11. Bae, K.; Jin, X.; Maywood, E. S.; Hastings, M. H.; Reppert, S. M.; Weaver, D. R. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30: 525鈥?36; 2001. CrossRef
    12. Balsalobre, A.; Brown, S. A.; Marcacci, L.; Tronche, F.; Kellendock, C.; Reichardt, H. M.; Sch眉tz, G.; Schibler, U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289: 2344鈥?347; 2000a. CrossRef
    13. Balsalobre, A.; Damiola, F.; Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93: 929鈥?37; 1998. CrossRef
    14. Balsalobre, A.; Marcacci, L.; Schibler, U. Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr. Bio. 10: 1291鈥?294; 2000b. CrossRef
    15. Berson, D. M.; Dunn, F. A.; Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295: 1070鈥?073; 2002. CrossRef
    16. Best, J. D.; Maywood, E. S.; Smith, K. L.; Hasting, M. H. Rapid resetting of the mammalian circadian clock. J. Neurosci. 19: 828鈥?35; 1999.
    17. Bjarnason, G. A.; Jordan, R. Rhythms in human gastrointestinal mucosa and skin. Chronobiol. Int. 19: 129鈥?40; 2002. CrossRef
    18. Bjarnason, G. A.; Jordan, R. C. K.; Wood, P. A.; Li Q.; Lincoln, D. W.; Sothern, R. B.; Hrushesky, W. J. M.; Ben-David, Y. Circadian expression of clock genes in human oral mucosa and skin. Association with specific cell-cycle phases. Am. J. Pathol. 158: 1793鈥?801; 2001.
    19. Brown, S. A.; Zumbrunn, G.; Fleury-Olela, F.; Preitner, N.; Schibler, U. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 12: 1574鈥?583; 2002. CrossRef
    20. Camacho, F.; Cilio, M.; Guo, Y., et al. Human casein kinase Idelta phosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett. 489: 159鈥?65; 2001. CrossRef
    21. Chai, J.; Tarnawski, A. S. Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing. J. Physiol. Pharmacol. 53: 147鈥?57; 2002.
    22. Challet, E.; Caldelas, I.; Graff, C.; P茅vet, P. Synchronization of the molecular clockwork by light- and food-related cues in mammals. Biol. Chem. 384: 711鈥?19; 2003. CrossRef
    23. Cheng, M. Y.; Bullock, C. M.; Li, C., et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417: 405鈥?10; 2002. CrossRef
    24. Chilov, D.; Hofer, T.; Bauer, C.; Wenger, R. H.; Gassmann, M. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J 15: 2613鈥?622; 2001. CrossRef
    25. Curtis, A. M.; Seo, S-B.; Westgate, E. J.; Rudic, R. D.; Smyth, E. M.; Chakravarti, D.; FitzGerald, G. A.; McNamara, P. Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J. Biol. Chem. 279: 7091鈥?097; 2004. CrossRef
    26. Damiola, F.; Le Minh, N.; Preitner, N.; Kornmann, B.; Fleury-Olela, F.; Schibler, U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14: 2950鈥?961; 2000. CrossRef
    27. Davidson, A. J.; Poole, A. S.; Yamazaki, S.; Menaker, M. Is the food-entrainable circadian oscillator in the digestive system? Genes Brain Behav. 2: 32鈥?9; 2003. CrossRef
    28. Davis, S.; Mirick, D. K.; Stevens, R. G. Night shift work, light at night, and risk of breast cancer. J. Natl. Cancer Inst. 93: 1557鈥?562; 2001. CrossRef
    29. Dioum, E. M.; Rutter, J.; Tuckerman, J. R.; Gonzalez, G.; Gilles-Gonzalez, M-A.; McKnight, S. L. NPAS2: a gas-responsive transcription factor. Science 298: 2385鈥?387; 2002. CrossRef
    30. Duffield, G. E.; Best, J.; Meurers, B.; Bittner, A.; Loros, J.; Dunlap, J. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol. 12: 551鈥?57; 2002. CrossRef
    31. Duffield, G. E. DNA microarray analyses of circadian timing: the genomic basis of biological time. J. Neuroendocrinol. 15: 991鈥?002; 2003. CrossRef
    32. Dunlap, J. C. Molecular bases for circadian clocks. Cell 96: 271鈥?90; 1999. CrossRef
    33. Earnest, D. J.; Liang, F-Q.; DiGiorgio, S.; Gallagher, M.; Harvey, B.; Earnest, B.; Seigel, G. Establishment and characterization of adenoviral E1A immortalized cell lines derived from the rat suprachiasmatic nucleus. J. Neurobiol. 39: 1鈥?3; 1999a. CrossRef
    34. Earnest, D. J.; Liang, F-Q.; Ratcliff, M.; Cassone, V. M. Immortal time: circadian clock properties of rat suprachiasmatic cell lines. Science 283: 693鈥?95; 1999b. CrossRef
    35. Ebisawa, T.; Uchiyama, M.; Kajimura, N., et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2: 342鈥?46; 2001. CrossRef
    36. Eide, E. J.; Vielhaber, E. L.; Hinz, W. A.; Virshup, D. M. The circadian regulatory proteins BMAL1 and Cryptochromes are substrates of casein kinase I epsilon. J. Biol. Chem. 19: 17248鈥?7254; 2002. CrossRef
    37. Fu, L.; Pelicano, H.; Liu, J.; Huang, P.; Lee, C. C. The circadian gene / Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111: 41鈥?0; 2002. CrossRef
    38. Gekakis, N.; Staknis, D.; Nguyen, H. B.; Davis, F. C.; Wilsbacher, L. D.; King, D. P.; Takahashi, J. S.; Weitz, C. J. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280: 1564鈥?569; 1998. CrossRef
    39. Gillespie, J. M. A.; Chan, B. P. K.; Roy, D.; Cai, F.; Belsham, D. D. Expression of circadian rhythm genes in gonadotropin-releasing hormone-secreting GT1-7 neurons. Endocrinology 144: 5285鈥?292; 2003. CrossRef
    40. Ginty, D. D.; Kornhauser, J. M.; Thompson, M. A.; Bading, H.; Mayo, K. E.; Takahashi, J. S.; Greenberg, M. E. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260: 238鈥?41; 1993. CrossRef
    41. Griffin, E. A., Jr.; Staknis, D.; Weitz, C. J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286: 768鈥?71; 1999. CrossRef
    42. Grima, B.; Chelot, E.; Xia, R.; Rouyer, F. Morning and evening activity peaks are controlled by different clock neurons of the Drosophila brain. Nature 431: 869鈥?3; 2004. CrossRef
    43. Grundschober, C.; Delaunay, F.; P眉hlhofer, A.; Triqueneaux, G.; Laudet, V.; Bartfai, T.; Nef, P. Circadian regulation of diverse gene products revealed by mRNA expression profiling of synchronized fibroblasts. J. Biol. Chem. 276: 46751鈥?6758; 2001. CrossRef
    44. Hamaguchi, H.; Fujimoto, K.; Kawamoto, T., et al. Expression of the gene for Dec2, a basic helix-loop-helix transcription factor, is regulated by a molecular clock system. Biochem. J. 382: 43鈥?0; 2004. CrossRef
    45. Hansen, J. Increased breast cancer risk among women who work predominantly at night. Epidemiology 12: 74鈥?7; 2001. CrossRef
    46. Harmer, S. L.; Panda, S.; Kay, S. A. Molecular bases of circadian rhythms. Annu. Rev. Cell Dev. Biol. 17: 215鈥?53; 2001. CrossRef
    47. Hastings, M. H.; Reddy, A. B.; Garabette, M.; King, V. M.; Chahad-Ehlers, S.; O鈥橞rien, J.; Maywood, E. S. Expression of clock gene products in the suprachiasmatic nucleus in relation to circadian behaviour. Novartis Found. Symp. 253: 203鈥?22; 2003.
    48. Hazlerigg, D. G.; Barrett, P.; Hastings, M. H.; Morgan, P. J. Are nuclear receptors involved in pituitary responsiveness to melatonin? J. Biol. Chem. 269: 28531鈥?8534; 1996.
    49. Hida, A.; Koike, N.; Hirose, M.; Hattori, M.; Sakaki, Y.; Tei, H. The human and mouse / Period1 genes: five well-conserved E-boxes additively contribute to the enhancement of / mPer1 transcription. Genomics 65: 224鈥?33; 2000. CrossRef
    50. Hirota, T.; Okano, T.; Kokame, K.; Shirotani-Ikejima, H.; Miyata, T.; Fukada, Y. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J. Biol. Chem. 277: 44244鈥?4251; 2002. CrossRef
    51. Hogenesch, J. B.; Gu, Y. Z.; Jain, S.; Bradfield, C. A. The basic-helix-loophelix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 95: 5474鈥?479; 1998. CrossRef
    52. Honma, S.; Kawamoto, T.; Takagi, Y.; Fujimoto, K.; Sato, F.; Noshiro, M.; Kato, Y.; Honma, K-I. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419: 841鈥?44; 2002. CrossRef
    53. Honma, S.; Shirakawa, T.; Katsuno, Y.; Namihira, M.; Honma, K-I. Circadian periods of single suprachiasmatic neurons in rats. Neurosci. Lett. 250: 157鈥?60; 1998. CrossRef
    54. Hurst, W. J.; Earnest, D.; Gilette, M. U. Immortalized suprachiasmatic nucleus cells express components of multiple circadian regulatory pathways. Biochem. Biophys. Res. Commun. 292: 20鈥?0; 2002a. CrossRef
    55. Hurst, W. J.; Mitchell, J. W.; Gilette, M. U. Synchronization and phase-resetting by glutamate of an immortalized SCN cell line. Biochem. Biophys. Res. Commun. 298: 133鈥?43; 2002b. CrossRef
    56. Jin, X.; Shearman, L. P.; Weaver, D. R.; Zylka, M. J.; De Vries, G. J.; Reppert, S. M. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96: 57鈥?8; 1999. CrossRef
    57. Jung, H.; Choe, Y.; Kim, H.; Park, N.; Son, G. H.; Khang, I.; Kim, K. Involvement of CLOCK:BMAL1 heterodimer in serum-responsive mPer1 induction. Neuroreport 14: 15鈥?9; 2003. CrossRef
    58. Kaasik, K.; Lee, C. C. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430: 467鈥?71; 2004. CrossRef
    59. Kaeffer, B. Mammalian intestinal epithelium cells in primary culture: a mini review. In Vitro Cell. Dev. Biol. 38A: 123鈥?34; 2002. CrossRef
    60. Katzenberg, D.; Young, T.; Finn, L.; Lin, L.; King, D. P.; Takahashi, J. S.; Mignot, E. A CLOCK polymorphism associated with human diurnal preference. Sleep 15: 569鈥?76; 1998.
    61. King, D. P.; Zhao, Y.; Sangoram, A. M., et al. Positional cloning of the mouse circadian clock gene. Cell 89: 641鈥?53; 1997. CrossRef
    62. Kornmann, B.; Preitner, N.; Rifat, D.; Fleury-Olela, F.; Schibler, U. Analysis of circadian liver gene expression by ADDER, a highly sensitive method for the display of differentially expressed mRNAs. Nucleic Acids Res. 29: E51鈥?; 2001. CrossRef
    63. Kramer, A.; Yang, F. C.; Snodgrass, P., et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294: 2511鈥?515; 2001. CrossRef
    64. Krishnan, B.; Dryer, S. E.; Hardin, P. E. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400: 375鈥?78; 1999. CrossRef
    65. Kume, K.; Zylka, M. J.; Sriram, S.; Shearman, L. P.; Weaver, D. R.; Jin, X.; Maywood, E. S.; Hastings, M. H. mCry1 and mCry2 are essential components of the negative limb of the circadian clock feeback loop. Cell 98: 193鈥?05; 1999. CrossRef
    66. Le Minh, N.; Damiola, F.; Tronche, F.; Schutz, G.; Schibler, U. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 20: 7128鈥?136; 2001. CrossRef
    67. Lee, C.; Etchegaray, J-P.; Cagampang, F. R. A.; Loudon, A. S. I.; Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107: 855鈥?67; 2001. CrossRef
    68. Lee, C.; Weaver, D.; Reppert, S. M. Direct association between mouse PE-RIOD and CKIepsilon is critical for a functioning circadian clock. Mol. Cell. Biol. 24: 584鈥?94; 2004. CrossRef
    69. L茅vi, F. From circadian rhythms to cancer chronotherapeutics Chronobiol. Int. 19: 1鈥?9; 2002. CrossRef
    70. Li, L.; Akashi, K. Unraveling the molecular components and genetic blue-prints of stem cells. BioTechniques 35: 1233鈥?239; 2003.
    71. Liu, Y.; Tsinoremas, N.; Johnson, C.; Lebdeva, N.; Golden, S.; Ishiura, M.; Kondo, T. Circadian orchestration of gene expression in cyanobacteria. Genes Dev. 9: 1469鈥?478; 1995.
    72. Maronde, E.; Motzkus, D. Oscillation of human Period 1 (hPER1) reporter gene activity in human neuroblastoma cells in vivo. Chronobiol. Int. 20: 671鈥?81; 2003. CrossRef
    73. Matsuo, T.; Yamaguchi, S.; Mitsui, S.; Emi, A.; Shimoda, F.; Okamura, H. Control mechanism of the circadian clock for timing of cell division in vivo. Science 302: 255鈥?59; 2003. CrossRef
    74. McNamara, P.; Seo, S-B.; Rudi, R. R.; Seghal, A.; Chakravarti, D.; FitzGerald, G. A. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105: 877鈥?89; 2001. CrossRef
    75. Miyazaki, K.; Mezaki, M.; Ishida, N. The role of phosphorylation and degradation of hPER protein oscillations in normal human fibroblasts. Novartis Found. Symp. 253: 238鈥?49; 2003. CrossRef
    76. Miyazaki, K.; Nagase, T.; Mesaki, M.; Narukawe, J.; Ohara, O.; Ishida, N. Phosphorylation of clock protein PER1 regulates its circadian degradation in human normal fibroblasts. Biochemical Journal 380: 95鈥?03; 2004. CrossRef
    77. Moore-Ede, M. C. Physiology of the circadian timing system: predictive versus reactive homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 19: R735-R752; 1986.
    78. Motzkus, D.; Albrecht, U.; Maronde, E. The human / PER1 gene is inductible by interleukin-6. J. Mol. Neurosci. 18: 105鈥?10; 2002. CrossRef
    79. Motzkus, D.; Maronde, E.; Grunenberg, U.; Lee, C.; Forssmann, W-G.; Albrecht, U. The human PER1 gene is transcriptionally regulated by multiple signaling pathways. FEBS Lett. 486: 315鈥?19; 2000. CrossRef
    80. M眉hlbauer, E.; Wolgast, S.; Finckh, U.; Peschke, D.; Peschke, E. Indication of circadian oscillations in the rat pancreas. FEBS Lett. 564: 91鈥?6; 2004. CrossRef
    81. Mu帽oz, E.; Brewer, M.; Baler, R. Circadian transcription: thinking outside the E-box. J. Biol. Chem. 277: 36009鈥?6017; 2002. CrossRef
    82. Nagoshi, E.; Saini, C.; Bauer, C.; Laroche, T.; Naef, F.; Schibler, U. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119: 693鈥?05; 2004. CrossRef
    83. Nonaka, H.; Emoto, N.; Ikeda, K., et al. Angiotensin II induces circadian gene expression of clock genes in cultured vascular smoth muscle cells. Circulation 104: 1746鈥?748; 2001.
    84. Oh-hashi, K.; Naruse, Y.; Tanaka, M. Intracellular calcium mobilization induces period genes via MAP kinase pathways in NIH3T3 cells. FEBS Lett. 516: 101鈥?05; 2002. CrossRef
    85. Oishi, K.; Sakamoto, K.; Okada, T.; Nagase, T.; Ishida, N. Antiphase circadian expression between BMAL1 and period homologue mRNA in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem. Biophys. Res. Commun. 253: 199鈥?03; 1998a. CrossRef
    86. Oishi, K.; Sakamoto, K.; Okada, T.; Nagase, T.; Ishida, N. Humoral signals mediate the circadian expression of rat period homologue (rPer2) mRNA in peripheral tissues. Neurosci. Lett. 256: 117鈥?19; 1998b. CrossRef
    87. Oishi, K.; Miyasaki, K.; Kadota, K., et al. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian ouput genes. J. Biol. Chem. 42: 41519鈥?1527; 2003. CrossRef
    88. Panda, S.; Antoch, M.; Miller, B. H., et al. Coordinated transcription of key pathway in the mouse by the circadian clock. Cell 109:307鈥?20; 2002. CrossRef
    89. Pando, M. P.; Morse, D.; Cermakian, N.; Sassone-Corsi, P. Phenotypic rescue of a peripheral clock genetic defect via SCN hierachical dominance. Cell 110:107鈥?17; 2002. CrossRef
    90. Pardini, L.; Kaeffer, B.; Trubuil, A.; Bourreille, A. Serum-induced expression of protein regulating the circadian rhythm in human colon cancer cell lines: implication for primary culture. World Congress on In Vitro Biology Abstract issue, VT-1006; 2004.
    91. Pardini, L.; Kaeffer, B.; Trubuil, A; Bourreille, A.; Galmiche, J-P. Human intestinal circadian clock: expression of clock genes in colonocytes lining the crypt. / Chronobiol. Int. in press; 2005.
    92. Pardini L.; Kaeffer B.; Trubuil A.; Bourreille A.; Galmiche J-P; Cherbut C. Period-1 and Period-2 protein expression by human colonocytes. 1st World Congress on Chronobiology, September 9鈥?2, 2003. Sapporo, Japan. Poster.
    93. Preitner, N.; Damiola, F.; Lopez-Molina, L.; Zakany, J.; Duboule, D.; Albrecht, U.; Schibler, U. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251鈥?60; 2002. CrossRef
    94. Rajaratnam, S. M. W.; Arendt, J. Health in a 24-h society. Lancet 358:999鈥?005; 2001. CrossRef
    95. Reddy, A. B.; Field, M. D.; Maywood, E. S.; Hasting, M. H. Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nucleic of mice subjected to experimental 鈥渏et-lag鈥? J. Neurosci. 22:7326鈥?330; 2002.
    96. Reick, M.; Garcia, J. A.; Dudley, C.; Mcknight, S. L. NPAS2: an analog of Clock operative in the mammalian forebrain. Science 293:506鈥?09; 2001. CrossRef
    97. Ripperger, J. A.; Shearman, L. P.; Reppert, S. M.; Schibler, U. CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev. 14:679鈥?89; 2000.
    98. Rivera-Berm煤dez, M. A.; Masana, M. I.; Brown, G. M.; Earnest, D. J.; Dubocovich, M. L. Immortalized cells from the rat suprachiasmatic nucleus express functional melatonin receptors. Brain Res. 1002;21鈥?7; 2004. CrossRef
    99. Roenneberg, T.; Merrow, M. Life before the clock: modeling circadian evolution. J. Biol. Rhythms 17:495鈥?05; 2002. CrossRef
    100. Ruby, N. F.; Burns, D. E.; Heller, H. C. Circadian rhythms in the suprachiasmatic nucleus are temperature-compensated and phase-shifted by heat pulses in vitro. J. Neurosci 19:8630鈥?636; 1999.
    101. Rutter, J.; Reick, M.; McKnight, S. L. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71:307鈥?31; 2002. CrossRef
    102. Rutter, J.; Reick, M.; Wu, L. C.; McKnight, S. L. Regulation of Clock and NPAS2 DNA binding by the Redox state of NAD cofactors. Science 293:510鈥?14; 2001. CrossRef
    103. Sato, F.; Kawamoto, T.; Fujimoto, K.; Noshiro, M.; Honda, K. K.; Honma, S., Honma, K-I.; Kato, Y. Functional analysis of the basic helix-loophelix transcription factor DEC1 in circadian regulation. Eur. J. Biochem. 271:4409鈥?419; 2004a. CrossRef
    104. Sato, T. K.; Panda, S.; Miraglia, L. J., et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527鈥?37; 2004b. CrossRef
    105. Scheving, L. A. Biological clocks and the digestive system. Gastroenterology 119:536鈥?49; 2000. CrossRef
    106. Schibler, U.; Ripperger, J.; Brown, S. A. Peripheral circadian oscillators in Mammals: time and food. J. Biol. Rhythms 18:250鈥?60; 2003. CrossRef
    107. Seron-Ferr茅, M.; Torres, C.; Parraguez, V. H.; Vergara, M.; Valladares, L.; Forcelledo, M. L.; Constandil, L.; Valenzuela, G. J. Perinatal neuro-endocrine regulation. Development of the circadian time-keeping system. Mol. Cell. Endocrinol. 186:169鈥?73; 2002. CrossRef
    108. Shearman, L. P.; Sriram, S.; Weaver, D. R., et al. Interacting molecular loops in the mammalian circadian clock. Science 288:1013鈥?019; 2000. CrossRef
    109. Shearman, L. P.; Zylka, M. J.; Weaver, D. R.; Kolakowski, L. F., Jr.; Reppert, S. M. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261鈥?269; 1997. CrossRef
    110. Stehle, J. H.; von Gall, C.; Korf, H-W. Melatonin: a clock-output, a clock-input. J. Neuroendocrinol. 15:383鈥?89; 2003. CrossRef
    111. Stokkan, K-A.; Yamazaki, S.; Tei, H.; Sakaki, Y.; Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 291:490鈥?93; 2001. CrossRef
    112. Storch, K-F.; Lipan, O.; Leykin, I.; Viswanathan, N.; Davis, F. C.; Wong, W. H.; Weitz, C. J. Extensive and divergent circadian gene expression in liver and heart. Nature 417:78鈥?3; 2002. CrossRef
    113. Sun, Z. S.; Albrecht, U.; Zhuchenko, O.; Bailey, J.; Eichele, G.; Lee, C. C.; RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90:1003鈥?011; 1997. CrossRef
    114. Takano, A.; Isojima, Y.; Nagai, K. Identification of mPerl phosphorylation sites responsible for the nuclear entry. J. Biol. Chem. 279:32578鈥?2585; 2004. CrossRef
    115. Tei, H.; Okamura, H.; Shigeyoshi, Y.; Fukuhara, C.; Ozawa, R.; Hirose, M.; Sakaki, Y. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389:512鈥?16; 1997. CrossRef
    116. Toh, K. L.; Jones, C. R.; He, Y.; Eide, E. J.; Hinz, W. A.; Virshup, D. M.; Ptacek, L. J.; Fu, Y-H An h / Per2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040鈥?043; 2001. CrossRef
    117. Tosini, G.; Doyle, S.; Geusz, M.; Menaker, M. Induction of photosensitivity in neonatal rat pineal gland. Proc. Natl. Acad. Sci. USA 97:11540鈥?1544; 2000. CrossRef
    118. Travnickova-Bendova, Z.; Cermakian, N.; Reppert, S. M.; Sassone-Corsi, P. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA 99:7728鈥?733; 2002. CrossRef
    119. Tsuchiya, Y.; Akashi, M.; Nishida, E. Temperature compensation and temperature resetting of circadian rhythms in mammalian cultured fibroblasts. Gene Cells 8:713鈥?20; 2003. CrossRef
    120. Tsuchiya, Y.; Nishida, E. Mammalian cultured cells as a model system of peripheral circadian clocks. J. Biochem. 134:785鈥?90; 2003. CrossRef
    121. Ueda, H. R.; Chen, W.; Adachi, A. et al. A transcription factor response element for gene expression during circadian night. Nature 418:534鈥?39; 2002. CrossRef
    122. van der Horst, G. T. J.; Muijtjens, M.; Kobayashi, K., et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627鈥?30; 1999. CrossRef
    123. Vielhaber, E.; Eide, E.; Rivers, A.; Gao, Z-H.; Virshup, D. M. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol. Cell. Biol. 20:4888鈥?899; 2000. CrossRef
    124. Welsh, D. K.; Yoo, S-H.; Liu, A. C.; Takahashi, J. S.; Kay, S. A. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 14:2289鈥?295; 2004. CrossRef
    125. Yagita, K.; Okamura, H. Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett. 465:79鈥?2; 2000. CrossRef
    126. Yagita, K.; Tamanini, F.; van der Horst, G. T. J.; Okamura, H., Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292:278鈥?81; 2001. CrossRef
    127. Yagita, K.; Yamaguchi, S.; Tamanini, F., et al. Dimerization and nuclear entry of mPER proteins in mammalian cells. Genes Dev. 14:1353鈥?363; 2000.
    128. Yamazaki, S.; Numano, R.; Abe, M., et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682鈥?85; 2000. CrossRef
    129. Yamazaki, S.; Straume, M.; Tei, H.; Sakaki, Y.; Memaker, M.; Block, G. D. Effects of aging on central and peripheral mammalian clocks. Proc. Natl. Acad. Sci. USA 99:10801鈥?0806; 2002. CrossRef
    130. Yu, W.; Nomura, M.; Ikeda, M. Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. Biochem. Biophys. Res. Commun. 290:933鈥?41; 2002. CrossRef
    131. Zanello, S. B.; Jackson, D. M.; Holick, M. F. Expression of the circadian clock genes clock and period1 in human skin. J. Invest. Dermatol. 115:757鈥?60; 2000. CrossRef
    132. Zheng, B.; Albrecht, U.; Kaasik, K., et al. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105:683鈥?4; 2001. CrossRef
    133. Zheng, B.; Larkin, D. W.; Albrecht, U.; Sun, Z. S.; Sage, M.; Eichele, G.; Lee, C. C.; Bradley, A. The mPER2 gene encodes a functional component of the mammalian circadian clock. Nature 400:169鈥?73; 1999. CrossRef
    134. Zylka, M. J.; Shearman, L. P.; Weaver, D. R.; Reppert, S. M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20:1103鈥?110; 1998. CrossRef
  • 作者单位:Bertrand Kaeffer (1)
    Lissia Pardini (1)

    1. CRNH de Nantes, Institut National Recherche Agronomique, Unit茅 Fonctions Digestives et Nutrition Humaine, BP 71627, 44316, NANTES, Cedex 03, France
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700