Acclimatory responses of the Daphnia pulex proteome to environmental changes. II. Chronic exposure to different temperatures (10 and 20°C) mainly affects protein metabolism
详细信息    查看全文
  • 作者:Susanne Schwerin (1)
    Bettina Zeis (1)
    Tobias Lamkemeyer (2)
    Rüdiger J Paul (1)
    Marita Koch (1)
    Johannes Madlung (2)
    Claudia Fladerer (2)
    Ralph Pirow (1)
  • 刊名:BMC Physiology
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:9
  • 期:1
  • 全文大小:2344KB
  • 参考文献:1. wFleaBase:Daphnia waterflea genome database. [http://wFleaBase.org]
    2. JGI: Joint Genome Institute. [http://www.jgi.doe.gov/Daphnia/]
    3. Pinkhaus O, Schwerin S, Pirow R, Zeis B, Buchen I, Gigengack U, Koch M, Horn W, Paul RJ: Temporal environmental change, clonal physiology and the genetic structure of a Daphnia assemblage ( D. galeata-hyalina hybrid species complex). / Freshwater Biol 2007, 52:1537-554. CrossRef
    4. Lamkemeyer T, Zeis B, Paul RJ: Temperature acclimation influences temperature-related behaviour as well as oxygen-transport physiology and biochemistry in the water flea Daphnia magna . / Can J Zool 2003, 81:237-49. CrossRef
    5. Paul RJ, Lamkemeyer T, Maurer J, Pinkhaus O, Pirow R, Seidl M, Zeis B: Thermal acclimation in the microcrustacean Daphnia : a survey of behavioural, physiological and biochemical mechanisms. / J Therm Biol 2004, 29:655-62. CrossRef
    6. Zeis B, Maurer J, Pinkhaus O, Bongartz E, Paul RJ: A swimming activity assay shows that the thermal tolerance of Daphnia magna is influenced by temperature acclimation. / Can J Zool 2004, 82:1605-613. CrossRef
    7. Hochachka PW, Somero GN: / Biochemical adaptation: Mechanism and process in physiological evolution Oxford: Oxford University Press 2002.
    8. Lampert W: Feeding and nutrition in Daphnia . / Memorie dell'Istituto Italiano di Idrobiologia, Daphnia / (Edited by: Peters RH, DeBernardi R). Pallanza: Istituto Italiano di Idrobiologia 1987, 45:143-92.
    9. Goss LB, Bunting DL:Daphnia development and reproduction -responses to temperature. / J Therm Biol 1983, 8:375-80. CrossRef
    10. Lampert W, Trubetskova I: Juvenile growth rate as a measure of fitness in Daphnia . / Funct Ecol 1996, 10:631-35. CrossRef
    11. Giebelhausen B, Lampert W: Temperature reaction norms of Daphnia magna : the effect of food concentration. / Freshwater Biol 2001, 46:281-89. CrossRef
    12. Zeis B, Lamkemeyer T, Paul RJ, Nunes F, Schwerin S, Koch M, Schütz W, Madlung J, Fladerer C, Pirow R: Acclimatory responses of the Daphnia pulex proteome to environmental changes. I. Chronic exposure to hypoxia affects the oxygen transport system and carbohydrate metabolism. / BMC Physiol 2009, 9:7. CrossRef
    13. Renzi F, Caffarelli E, Laneve P, Bozzoni I, Brunori M, Vallone B: The structure of the endoribonuclease XendoU: From small nuclear RNA processing to severe acute respiratory syndrome coronavirus replication. / Proc Natl Acad Sci USA 2006, 103:12365-2370. CrossRef
    14. Worrall JAR, Luisi BF: Information available at cut rates: structure and mechanism of ribonucleases. / Curr Opin Struct Biol 2007, 17:128-37. CrossRef
    15. Roehl White S, Lauring B: AAA+ ATPases: Achieving diversity of function with conserved machinery. / Traffic 2007, 8:1657-667. CrossRef
    16. Sappington TW, Raikhel AS: Molecular characteristics of insect vitellogenins and vitellogenin receptors. / Insect Biochem Mol Biol 1998, 28:277-00. CrossRef
    17. Romano M, Rosanova P, Anteo C, Limatola E: Vertebrate yolk proteins: a review. / Mol Reprod Dev 2004, 69:109-16. CrossRef
    18. Avarre J-C, Michelis R, Tietz A, Lubzens E: Relationship between vitellogenin and vitellin in a marine shrimp ( Penaeus semisulcatus ) and molecular characterization of vitellogenin complementary DNAs. / Biol Reprod 2003, 69:355-64. CrossRef
    19. Kato Y, Tokishita S, Ohta T, Yamagata H: A vitellogenin chain containing a superoxide dismutase-like domain is the major component of yolk proteins in cladoceran crustacean Daphnia magna . / Gene 2004, 334:157-65. CrossRef
    20. Smolenaars MMW, Madsen O, Rodenburg KW, Horst DJ: Molecular diversity and evolution of the large lipid transfer protein superfamily. / J Lipid Res 2006, 48:489-02. CrossRef
    21. Avarre J-C, Lubzens E, Babin PJ: Apolipocrustacein, formerly vitellogenin, is the major egg yolk precursor in decapod crustaceans and is homologous to insect apolipophorin II/I and vertebrate apolipoprotein B. / BMC Evol Biol 2007, 7:3. CrossRef
    22. Zaffagnini F, Zeni C: Considerations on some cytological and ultrastructural observations on fat cells in Daphnia (Crustacea, Cladocera). / Boll Zool 1986, 53:33-9.
    23. J?ger G: Ueber den Fettk?rper von Daphnia magna . / Z Zellforsch 1935, 22:89-31. CrossRef
    24. Sterba G: Zytologische Untersuchungen an grosskernigen Fettzellen von Daphnia pulex unter besonderer Berücksichtigung des Mitochondrien-Formwechsels. / Z Zellforsch 1956, 44:456-87.
    25. Tokishita S, Kato Y, Kobayashi T, Nakamura S, Ohta T, Yamagata H: Organization and repression by juvenile hormone of a vitellogenin gene cluster in the crustacean, Daphnia magna . / Biochem Biophys Res Commun 2006, 345:362-70. CrossRef
    26. McKee D, Ebert D: The interactive effects of temperature, food level and maternal phenotype on offspring size in Daphnia magna . / Oecologia 1996, 107:189-96. CrossRef
    27. Bordo D, Djinovic K, Bolognesi M: Conserved patterns in the Cu, Zn superoxide dismutase family. / J Mol Biol 1994, 238:366-86. CrossRef
    28. R?per K, Mao Y, Brown NH: Contribution of sequence variation in Drosophila actins to their incorporation into actin-based structures in vivo . / J Cell Sci 2005, 118:3937-948. CrossRef
    29. Hooper SI, Thuma JB: Invertebrate muscles: muscle specific genes and peptides. / Physiol Rev 2005, 85:1001-060. CrossRef
    30. Fyrberg EA, Fyrberg CC, Biggs JR, Saville D, Beall CJ, Ketchum A: Functional nonequivalence of Drosophila actin isoforms. / Biochem Genet 1998, 36:271-87. CrossRef
    31. George E, Ober MB, Emerson CP: Functional domains of the Drosophila melanogaster muscle myosin heavy-chain gene are encoded by alternatively spliced exons. / Mol Cell Biol 1989, 9:2957-974.
    32. Swank DM, Wells L, Kronert WA, Morrill GE, Bernstein SI: Determining structure/function relationships for sarcomeric myosin heavy chain by genetic and transgenic manipulation of Drosophila . / Microsc Res Techniq 2000, 50:430-42. CrossRef
    33. Rawlings ND, Morton FR, Barrett AJ: MEROPS: the peptidase database. / Nucleic Acids Res 2006, 34:D270-D272. CrossRef
    34. Krem MM, Rose T, Di Cera E: Sequence determinants of function and evolution in serine proteases. / Trends Cardiovasc Med 2000, 10:171-76. CrossRef
    35. Colbourne JK, Eads BD, Shaw J, Bohuski E, Bauer DJ, Andrews J: Sampling Daphnia's expressed genes: preservation, expansion and invention of crustacean genes with reference to insect. / BMC Genomics 2007, 8:217. CrossRef
    36. Hedstrom L: Serine protease mechanism and specificity. / Chem Rev 2002, 102:4501-523. CrossRef
    37. Perona JJ, Craik CS: Structural basis of substrate specificity in the serine proteases. / Protein Sci 1995, 4:337-60. CrossRef
    38. Benjamin DC, Kristjánsdóttir S, Gudmundsdóttir á: Increasing the thermal stability of euphauserase. A cold-active and multifunctional serine protease from antarctic krill. / Eur J Biochem 2001, 268:131. CrossRef
    39. Kristjánsdóttir S, Gudmundsdóttir á: Propeptide dependent activation of the antarctic krill euphauserase precursor produced in yeast. / Eur J Biochem 2000, 267:2632-639. CrossRef
    40. Gudmundsdóttir á: Cold-adapted and mesophilic brachyurins. / Biol Chem 2002, 383:1125-131. CrossRef
    41. Rudenskaya GN: Brachyurins, serine collagenolytic enzymes from crabs. / Rus J Bioorg Chem 2003, 29:101-11. CrossRef
    42. Rudenskaya GN, Kislitsin YA, Rebrikov DV: Collagenolytic serine protease PC and trypsin PC from king crab Paralithodes camtschaticus : cDNA cloning and primary structure of the enzymes. / BMC Struct Biol 2004, 4:2. CrossRef
    43. von Elert E, Agrawal MK, Gebauer C, Jaensch H, Bauer U, Zitt A: Protease activity in gut of Daphnia magna : evidence for trypsin and chymotrypsin enzymes. / Comp Biochem Physiol B Biochem Mol Biol 2004, 137:287-96. CrossRef
    44. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS: Probability-based protein identification by searching sequence data bases using mass spectrometric data. / Electrophoresis 1999, 20:3551-567. CrossRef
    45. SignalP 3.0[http://www.cbs.dtu.dk/services/SignalP/]
    46. Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. / J Mol Biol 2004, 340:783-95. CrossRef
    47. Emanuelsson O, Brunak S, von Heijne G, Nielsen H: Locating proteins in the cell using TargetP, SignalP, and related tools. / Nature Protocols 2007, 2:953-71. CrossRef
    48. Compute pI/Mw tool[http://www.expasy.ch/tools/pi_tool.html]
    49. Bjellqvist B, Basse B, Olsen E, Celis JE: Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. / Electrophoresis 1994, 15:529-39. CrossRef
    50. Gasteiger E, Hoogland C, Duvaud S, Wilkins MR, Appel RD, Bairoch A: Protein Identification and Analysis Tools on the ExPASy Server. / The Proteomics Protocols Handbook / (Edited by: Walker JM). Totowa: Humana Press 2005, 571-07. CrossRef
    51. CDD: a Conserved Domain Database and Search Service. [http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml]
    52. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CI, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, Bryant SH: CDD: a conserved domain database for interactive domain family analysis. / Nucleic Acids Res 2006, 35:D237-D240. CrossRef
    53. NetNGlyc 1.0 Server[http://www.cbs.dtu.dk/services/NetNGlyc/]
    54. TCoffee[http://www.tcoffee.org/]
    55. Notredame C, Higgins DG, Heringa J: T-Coffee: a novel method for fast and accurate multiple sequence aligment. / J Mol Biol 2000, 302:205-17. CrossRef
    56. Poirot O, O'Toole E, Notredame C: Tcoffee@igs: a web server for computing, evaluating and combining multiple sequence alignments. / Nucleic Acids Res 2003, 31:3503-506. CrossRef
    57. Saitou N, Nei M: The neighbor-joining method -a new method for reconstructing phylogenetic trees. / Mol Biol Evol 1987, 4:406-25.
    58. Polyák E, Standiford DM, Yakopson V, Emerson CP, Franzini-Armstrong C: Contribution of myosin rod protein to structural organization of adult and embryonic muscles in Drosophila . / J Mol Biol 2003, 331:1077-091. CrossRef
    59. Greer J: Comparative modeling methods: Application to the family of the mammalian serine proteases. / Proteins Struct Funct Genet 1990, 7:317-34. CrossRef
  • 作者单位:Susanne Schwerin (1)
    Bettina Zeis (1)
    Tobias Lamkemeyer (2)
    Rüdiger J Paul (1)
    Marita Koch (1)
    Johannes Madlung (2)
    Claudia Fladerer (2)
    Ralph Pirow (1)

    1. Institute of Zoophysiology, University of Münster, Münster, Germany
    2. Proteom Centrum Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
文摘
Background Temperature affects essentially every aspect of the biology of poikilothermic animals including the energy and mass budgets, activity, growth, and reproduction. While thermal effects in ecologically important groups such as daphnids have been intensively studied at the ecosystem level and at least partly at the organismic level, much less is known about the molecular mechanisms underlying the acclimation to different temperatures. By using 2D gel electrophoresis and mass spectrometry, the present study identified the major elements of the temperature-induced subset of the proteome from differently acclimated Daphnia pulex. Results Specific sets of proteins were found to be differentially expressed in 10°C or 20°C acclimated D. pulex. Most cold-repressed proteins comprised secretory enzymes which are involved in protein digestion (trypsins, chymotrypsins, astacin, carboxypeptidases). The cold-induced sets of proteins included several vitellogenin and actin isoforms (cytoplasmic and muscle-specific), and an AAA+ ATPase. Carbohydrate-modifying enzymes were constitutively expressed or down-regulated in the cold. Conclusion Specific sets of cold-repressed and cold-induced proteins in D. pulex can be related to changes in the cellular demand for amino acids or to the compensatory control of physiological processes. The increase of proteolytic enzyme concentration and the decrease of vitellogenin, actin and total protein concentration between 10°C and 20°C acclimated animals reflect the increased amino-acids demand and the reduced protein reserves in the animal's body. Conversely, the increase of actin concentration in cold-acclimated animals may contribute to a compensatory mechanism which ensures the relative constancy of muscular performance. The sheer number of peptidase genes (serine-peptidase-like: > 200, astacin-like: 36, carboxypeptidase-like: 30) in the D. pulex genome suggests large-scaled gene family expansions that might reflect specific adaptations to the lifestyle of a planktonic filter feeder in a highly variable aquatic environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700