Acclimatory responses of the Daphnia pulex proteome to environmental changes. I. Chronic exposure to hypoxia affects the oxygen transport system and carbohydrate metabolism
详细信息    查看全文
  • 作者:Bettina Zeis (1)
    Tobias Lamkemeyer (2)
    Rüdiger J Paul (1)
    Frank Nunes (1)
    Susanne Schwerin (1)
    Marita Koch (1)
    Wolfgang Schütz (2)
    Johannes Madlung (2)
    Claudia Fladerer (2)
    Ralph Pirow (1)
  • 刊名:BMC Physiology
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:9
  • 期:1
  • 全文大小:1576KB
  • 参考文献:1. Hochachka PW, Somero GN: / Biochemical adaptation: Mechanism and process in physiological evolution Oxford: Oxford University Press 2002.
    2. Fox HM, Hardcastle SM, Dresel EIB: Fluctuations in the haemoglobin content of Daphnia . / Proc R Soc Lond B Biol Sci 1949, 136:388-99. CrossRef
    3. Fox HM, Phear EA: Factors influencing the haemoglobin synthesis by Daphnia . / Proc R Soc Lond B Biol Sci 1953, 141:179-89. CrossRef
    4. Chandler A: Causes of variation in the haemoglobin content of Daphnia (Crustacea: Cladocera). / Proc R Soc Lond B Biol Sci 1954, 124:625-30.
    5. Kobayashi M, Hoshi T: Relationship between the haemoglobin concentration of Daphnia magna and the ambient oxygen concentration. / Comp Biochem Physiol A Physiol 1982, 72:247-49. CrossRef
    6. Paul RJ, Zeis B, Lamkemeyer T, Seidl M, Pirow R: Control of oxygen transport in the microcrustacean Daphnia : regulation of haemoglobin expression as central mechanism of adaptation to different oxygen and temperature conditions. / Acta Physiol Scand 2004, 182:259-75. CrossRef
    7. Kobayashi M, Fujiki M, Suzuki T: Variation in and oxygen-binding properties of Daphnia magna hemoglobin. / Physiol Zool 1988, 61:415-19.
    8. Kobayashi M, Ishigaki K-I, Kobayashi M, Igarashi Y, Imai K: Oxygen transport efficiency of multiple-component hemoglobin in Daphnia magna . / Can J Zool 1994, 72:2169-171. CrossRef
    9. Kimura S, Tokishita S, Ohta T, Kobayashi M, Yamagata H: Heterogeneity and differential expression under hypoxia of two-domain hemoglobin chains in the water flea, Daphnia magna . / J Biol Chem 1999, 274:10649-0653. CrossRef
    10. Zeis B, Becher B, Goldmann T, Clark R, Vollmer E, B?lke B, Bredebusch I, Lamkemeyer T, Pinkhaus O, Pirow R, Paul RJ: Differential haemoglobin gene expression in the crustacean Daphnia magna exposed to different oxygen partial pressures. / Biol Chem 2003, 384:1133-145. CrossRef
    11. Lamkemeyer T, Zeis B, Paul RJ: Temperature acclimation influences temperature-related behaviour as well as oxygen-transport physiology and biochemistry in the water flea Daphnia magna . / Can J Zool 2003, 81:237-49. CrossRef
    12. Goldmann T, Becher B, Wiedorn KH, Pirow R, Deutschbein ME, Vollmer E, Paul RJ: Epipodite and fat cells as sites of hemoglobin synthesis in the branchiopod crustacean Daphnia magna . / Histochem Cell Biol 1999, 112:335-39.
    13. Weber RE, Vinogradov SN: Nonvertebrate hemoglobins: Functions and molecular adaptations. / Physiol Rev 2001, 81:569-28.
    14. Lamkemeyer T, Paul RJ, St?cker W, Yiallouros I, Zeis B: Macromolecular isoforms of Daphnia magna haemoglobin. / Biol Chem 2005, 386:1087-096. CrossRef
    15. Lamkemeyer T, Zeis B, Decker H, Jaenicke E, Waschbüsch D, Gebauer WMJ, Meissner U, Rousselot M, Zal F, Nicholson GJ, Paul RJ: Molecular mass of macromolecules and subunits and the quarternary structure of hemoglobins from the microcrustacean Daphnia magna . / FEBS J 2006, 273:3393-410. CrossRef
    16. Kobayashi M, Yamagata H: Structure and function of hemoglobin in Daphnia magna . / Trends Comp Biochem Physiol 2000, 6:163-74.
    17. Pirow R, B?umer C, Paul RJ: Benefits of haemoglobin in the cladoceran crustacean Daphnia magna . / J Exp Biol 2001, 204:3425-441.
    18. Pirow R, B?umer C, Paul RJ: Crater landscape: two-dimensional oxygen gradients in the circulatory system of the microcrustacean Daphnia magna . / J Exp Biol 2004, 207:4393-405. CrossRef
    19. Kring RL, O'Brien WJ: Effect of varying oxygen concentrations on the filtering rate of Daphnia pulex . / Ecology 1976, 57:808-14. CrossRef
    20. Sell AF: Adaptation to oxygen deficiency: Contrasting patterns of haemoglobin synthesis in two coexisting Daphnia species. / Comp Biochem Physiol A Mol Integr Physiol 1998, 120:119-25. CrossRef
    21. Dewilde S, Van Hauwaert ML, Peeters K, Vanfleteren J, Moens L:Daphnia pulex didomain hemoglobin: Structure and evolution of polymeric hemoglobins and their coding genes. / Mol Biol Evol 1999, 16:1208-218.
    22. Dangott LJ, Terwilliger RC: The subunit structure of Daphnia pulex hemoglobin. / Comp Biochem Physiol B Biochem Mol Biol 1980, 67:301-06. CrossRef
    23. Wolf GH, Smet J, Decleir W: Oxygen binding properties of hemoglobins from Daphnia pulex (De Geer). / Comp Biochem Physiol A Physiol 1983, 75:261-65. CrossRef
    24. Peeters K, Mertens J, Hebert P, Moens L: The globin composition of Daphnia pulex hemoglobin and the comparison of the amino acid composition of invertebrate hemoglobins. / Comp Biochem Physiol B Biochem Mol Biol 1990, 97:369-81. CrossRef
    25. wFleaBase[http://wFleaBase.org]
    26. Joint Genome Institute[http://www.jgi.doe.gov/Daphnia/]
    27. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS: Probability-based protein identification by searching sequence data bases using mass spectrometric data. / Electrophoresis 1999, 20:3551-567. CrossRef
    28. Tokishita S, Ohta T, Yamagishi H: Genomic organization and expression of Daphnia hemoglobin genes. / BMC Biology 2008.
    29. Gorr TA, Cahn JD, Yamagata H, Bunn HF: Hypoxia-induced synthesis of hemoglobin in the crustacean Daphnia magna is hypoxia-inducible factor-dependent. / J Biol Chem 2004, 279:36038-6047. CrossRef
    30. Semenza GL: Regulation of mammalian O 2 homeostasis by hypoxia-inducible factor 1. / Ann Rev Cell Dev Biol 1999, 15:551-78. CrossRef
    31. Semenza GL: HIF-1 and human disease: one highly involved factor. / Genes Dev 2000, 14:1983-991.
    32. Wenger RH: Cellular adaptation to hypoxia: O 2 -sensing protein hydroxylases, hypoxia-inducible transcription factors, and O 2 -regulated gene expression. / FASEB Journal 2002, 16:1151-162. CrossRef
    33. Pancholi V: Multifunctional alpha-enolase: its role in diseases. / Cell Mol Life Sci 2001, 58:902-20. CrossRef
    34. von Elert E, Agrawal MK, Gebauer C, Jaensch H, Bauer U, Zitt A: Protease activity in gut of Daphnia magna : evidence for trypsin and chymotrypsin enzymes. / Comp Biochem Physiol B Biochem Mol Biol 2004, 137:287-96. CrossRef
    35. St?cker W, Gomis-Rüth F-X, Bode W, Zwilling R: Implications of the three-dimensional structure of astacin for the structure and function of the astacin family of zinc-endopeptidases. / Eur J Biochem 1993, 214:215-31. CrossRef
    36. Bond JS, Beynon RJ: The astacin family of metalloendopeptidases. / Protein Sci 1995, 4:1247-261. CrossRef
    37. Rawlings ND, Barrett AJ: Evolutionary families of metalloproteases. / Methods Enzymol 1995, 248:138-28.
    38. Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G: Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. / Proc Natl Acad Sci USA 1995, 92:7090-094. CrossRef
    39. Davies G, Henrissat B: Structures and mechanisms of glycosyl hydrolases. / Structure 1999, 3:853-59. CrossRef
    40. CAZy database[http://www.cazy.org/]
    41. Lampert W: Feeding and nutrition in Daphnia . / Memorie dell'Istituto Italiano di Idrobiologia, Daphnia / (Edited by: Peters RH, DeBernardi R). Pallanza: Istituto Italiano di Idrobiologia 1987, 45:143-92.
    42. Watanabe H, Tokuda G: Animal cellulases. / Cell Mol Life Sci 2001, 58:1167-178. CrossRef
    43. Schoenberg SA, Maccubbin AE, Hodson RE: Cellulose digestion by freshwater microcrustacea. / Limnol Oceanogr 1984, 29:1132-136. CrossRef
    44. Zimmer M, Bartholmé S: Bacterial endosymbionts in Asellus aquaticus (Isopoda) and Gammarus pulex (Amphipoda) and their contribution to digestion. / Limnol Oceanogr 2003, 48:2208-213. CrossRef
    45. Monk DC: Digestion of cellulose and other dietary components, and pH of gut in amphipod Gammarus pulex L. / Freshwater Biol 1977, 7:431-40. CrossRef
    46. McGrath CC, Matthews RA: Cellulase activity in the freshwater amphipod Gammarus lacustris . / J North Amer Benthol Soc 2000, 19:298-07. CrossRef
    47. Crawford AC, Richardson NR, Mather PB: A comparative study of cellulase and xylanase activity in freshwater crayfish and marine prawns. / Aquacult Res 2005, 36:586-92. CrossRef
    48. Linton SM, Greenaway P: A review of feeding and nutrition of herbivorous land crabs: adaptations to low quality plant diets. / J Comp Physiol B 2007, 177:269-86. CrossRef
    49. Davison A, Blaxter M: Ancient origin of glycosyl hydrolase family 9 cellulase genes. / Mol Biol Evol 2005, 22:1273-284. CrossRef
    50. De Coen WM, Janssen CR: The use of biomarkers in Daphnia magna toxicity testing. II. Digestive enzyme activity in Daphnia magna exposed to sublethal concentrations of cadmium, chromium and mercury. / Chemosphere 1997, 35:1053-067. CrossRef
    51. Zellmer ID, Arts MT, ?ustr V: Food chain effects of sublethal ultraviolett radiation on subarctic Daphnia pulex -a field and laboratory study. / Arch Hydrobiol 2006, 167:515-31. CrossRef
    52. Soetaert A, Vandenbrouck T, Ven K, Maras M, van Remortel P, Blust R, De Coen WM: Molecular responses during cadmium-induced stress in Daphnia magna : Integration of differential gene expression with higher-level effects. / Aquat Toxicol 2007, 83:212-22. CrossRef
    53. Seidl MD, Paul RJ, Pirow R: Effects of hypoxia acclimation on morpho-physiological traits over three generations of Daphnia magna . / J Exp Biol 2005, 208:2165-175. CrossRef
    54. Matthes M: Low genotypic diversity in a Daphnia pulex population in a biomanipulated lake: the lack of vertical and seasonal variability. / Hydrobiologia 2004, 526:33-2. CrossRef
    55. Elendt BP, Bias WR: Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing. Effects of the optimization of culture conditions on life history parameters of D. magna . / Water Res 1990, 24:1157-167. CrossRef
    56. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. / Anal Biochem 1976, 72:248-54. CrossRef
    57. Berth M, Moser FM, Kolbe M, Bernhardt J: The state of the art in the analysis of two-dimensional gel electrophoretic images. / Appl Microbiol Biotechnol 2007, 76:1223-243. CrossRef
    58. Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. / J Mol Biol 2004, 340:783-95. CrossRef
    59. SignalP 3.0[http://www.cbs.dtu.dk/services/SignalP/]
    60. Compute pI/Mw tool[http://www.expasy.ch/tools/pi_tool.html]
    61. Bjellqvist B, Basse B, Olsen E, Celis JE: Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. / Electrophoresis 1994, 15:529-39. CrossRef
    62. Gasteiger E, Hoogland C, Duvaud S, Wilkins MR, Appel RD, Bairoch A: Protein Identification and Analysis Tools on the ExPASy Server. / The Proteomics Protocols Handbook / (Edited by: Walker JM). Totowa: Humana Press 2005, 571-07. CrossRef
    63. Daphnia Genomics Consortium[http://daphnia.cgb.indiana.edu]
  • 作者单位:Bettina Zeis (1)
    Tobias Lamkemeyer (2)
    Rüdiger J Paul (1)
    Frank Nunes (1)
    Susanne Schwerin (1)
    Marita Koch (1)
    Wolfgang Schütz (2)
    Johannes Madlung (2)
    Claudia Fladerer (2)
    Ralph Pirow (1)

    1. Institute of Zoophysiology, University of Münster, Münster, Germany
    2. Proteom Centrum Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
文摘
Background Freshwater planktonic crustaceans of the genus Daphnia show a remarkable plasticity to cope with environmental changes in oxygen concentration and temperature. One of the key proteins of adaptive gene control in Daphnia pulex under hypoxia is hemoglobin (Hb), which increases in hemolymph concentration by an order of magnitude and shows an enhanced oxygen affinity due to changes in subunit composition. To explore the full spectrum of adaptive protein expression in response to low-oxygen conditions, two-dimensional gel electrophoresis and mass spectrometry were used to analyze the proteome composition of animals acclimated to normoxia (oxygen partial pressure [Po2]: 20 kPa) and hypoxia (Po2: 3 kPa), respectively. Results The comparative proteome analysis showed an up-regulation of more than 50 protein spots under hypoxia. Identification of a major share of these spots revealed acclimatory changes for Hb, glycolytic enzymes (enolase), and enzymes involved in the degradation of storage and structural carbohydrates (e.g. cellubiohydrolase). Proteolytic enzymes remained constitutively expressed on a high level. Conclusion Acclimatory adjustments of the D. pulex proteome to hypoxia included a strong induction of Hb and carbohydrate-degrading enzymes. The scenario of adaptive protein expression under environmental hypoxia can be interpreted as a process to improve oxygen transport and carbohydrate provision for the maintenance of ATP production, even during short episodes of tissue hypoxia requiring support from anaerobic metabolism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700