Micromorphological and chemical elucidation of the degradation mechanisms of birch bark archaeological artefacts
详细信息    查看全文
  • 作者:Sibilla Orsini ; Erika Ribechini ; Francesca Modugno ; Johanna Klügl…
  • 关键词:Archaeological birch bark ; Suberin ; Triterpenes ; SEM ; GC/MS ; Oxidation ; Depolymerisation
  • 刊名:Heritage Science
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:3
  • 期:1
  • 全文大小:3,419 KB
  • 参考文献:1. Ribechini, E., Direct Mass Spectrometric Techniques: Versatile Tools to Characterise Resinous Materials, in Organic Mass Spectrometry in Art and Archaeology, M.P. Colombini and F. Modugno, Editors. 2009, John Wiley&Sons Ltd. Chichester (UK). p. 75-5.
    2. Modugno, F. and E. Ribechini, GC/MS in the Characterisation of Resinous Materials, in Organic Mass Spectrometry in Art and Archaeology, M.P. Colombini and F. Modugno, Editors. 2009, John Wiley&Sons, Ltd. Chichester (UK). p. 215-35.
    3. Croft S, Mathewes RW. Barking up the Right Tree: Understanding Birch Bark Artifacts from the Canadian Plateau, British Columbia. BC Studies. 2013;180:83-22.
    4. Grahame, C., ed. Excavations at Star Carr: An Early Mesolithic Site at Seamer Near Scarborough. 1954, Yorkshire. Cambridge University Press, Cambridge.
    5. T?rbat, C., D. Batsüch, and T. Ocir Batbajar, Steppenkrieger. Reiternomaden des 7.-14. Jahrhunderts aus der Mongolei. First Edition ed. Das Felsgrab aus Zargalant, Manchan sum, Chovd ajmag. 2012, Germany.
    6. Ekman R. The Suberin monomers and triterpenoids from the Outer Bark of Betula verrucosa Ehrh. Holzforschung. 1983;37(4):205-1. CrossRef
    7. Holloway PJ. The composition of suberin from the corks of Quercus suber L. and Betula pendula roth. Chem Phys Lipids. 1972;9(2):158-0. CrossRef
    8. Bernards MA. Demystifying suberin. Can J Bot. 2002;80(3):227-0. CrossRef
    9. Cole BJW, Bentley MD, Hua Y. Triterpenoid extractives in the Outer Bark of Betula lenta (Black Birch). Holzforschung. 1991;45(4):265-. CrossRef
    10. Cole BJW, Bentley MD, Hua Y, Bu L. Triterpenoid constituents in the Outer Bark of Betula alleghaniensis (Yellow Birch). J Wood Chem Technol. 1991;11(2):209-3. CrossRef
    11. Gra?a J, Santos S. Suberin: a biopolyester of plants-skin. Macromol Biosci. 2007;7(2):128-5. CrossRef
    12. Huaa Y, Bentley MD, Cole BJW. Triterpenes from the Outer Bark of Betula nigra. J Wood Chem Technol. 1991;11(4):503-6. CrossRef
    13. O'Connell MM, Bentley MD, Campbell CS, Cole BJW. Betulin and lupeol in bark from four white-barked birches. Phytochemistry. 1988;27(7):2175-. CrossRef
    14. Lopes MH, Gil AM, Silvestre AJ, Neto CP. Composition of suberin extracted upon gradual alkaline methanolysis of Quercus suber L. Cork. J Agric Food Chem. 2000;48(2):383-1. CrossRef
    15. Cordeiro N, Belgacem MN, Silvestre AJ, Pascoal Neto C, Gandini A. Cork suberin as a new source of chemicals.: 1. Isolation and chemical characterization of its composition. Int J Biol Macromol. 1998;22(2):71-0. CrossRef
    16. Gandini A, Pascoal Neto C, Silvestre AJD. Suberin: a promising renewable resource for novel macromolecular materials. Prog Polym Sci. 2006;31(10):878-2. CrossRef
    17. Modugno F, Ribechini E, Colombini MP. Chemical study of triterpenoid resinous materials in archaeological findings by means of direct exposure electron ionisation mass spectrometry and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(11):1787-00. CrossRef
    18. Jensen, W., The connection between the anatomical structure and chemical composition and the properties of outer bark of White Birch. Vol. 15. 1949.
    19. Pollard M, Beisson F, Li Y, Ohlrogge JB. Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci. 2008;13(5):236-6. CrossRef
    20. Sch?nherr J, Ziegler H. Water permeability of Betula pe
  • 刊物主题:Materials Science, general;
  • 出版者:BioMed Central
  • ISSN:2050-7445
文摘
Introduction Since ancient times, the unique properties of birch barks (Betula genus) have made them a material of choice for producing both everyday-life and artistic objects. Yet archaeological birch bark artefacts are rare, and little is known about the chemical transformations undergone by bark (chemically composed mainly of suberin and triterpenes) in archaeological contexts. Understanding the chemical modifications induced by ageing is essential for selecting suitable preservation and conservation approaches. Thus, the main aim of this research is to assess the preservation and state of degradation of archaeological findings made of birch bark: a Neolithic bow case recovered from a melting ice patch in the Bernese Alps (Switzerland) and a waterlogged birch bark vessel discovered at Moossee Lake (Canton of Bern, Switzerland). Scanning electron microscopy (SEM) and gas chromatography/mass spectrometry (GC/MS) were used to obtain information at micro-morphological and molecular levels on the state of degradation of the birch bark findings. GC/MS analysis followed two different sample preparations, alkaline hydrolysis and solvent extraction, in order to investigate respectively the hydrolysable and soluble constituents, and to test whether part of the suberin structure was depolymerised by the long period of burial. Results and conclusions SEM investigations on archaeological birch bark samples have shown that the extent of degradation of the microstructure is much higher in waterlogged birch bark than in birch bark preserved in ice. GC/MS analysis revealed that at a molecular level, the birch bark was quite well preserved. In both the archaeological environments, ice patch and lake water, various reactions had taken place leading to the depletion of reactive and sensitive compounds such as unsaturated acids and epoxy-compounds. In addition, archaeological birch bark had undergone depolymerization and oxidation reactions leading to the appearance of free suberin monomers and of oxidised triterpenes (betulone and lupenone). GC/MS data also seems to suggest that the birch bark preserved in the waterlogged site had a more pronounced degradation both in terms of oxidation and depolymerisation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700