Innovative approaches for the development of antidepressant drugs: Current and future strategies
详细信息    查看全文
  • 作者:Lee E. Schechter (1)
    Robert H. Ring (1)
    Chad E. Beyer (1)
    Zo? A. Hughes (1)
    Xavier Khawaja (1)
    Jessica E. Malberg (1)
    Sharon Rosenzweig-Lipson (1)
  • 关键词:Monoamines ; glutamate ; peptides ; neurotrophins ; GABA ; serotonin
  • 刊名:Neurotherapeutics
  • 出版年:2005
  • 出版时间:October 2005
  • 年:2005
  • 卷:2
  • 期:4
  • 页码:590-611
  • 全文大小:256KB
  • 参考文献:1. Eriksson E. Antidepressant drugs: does it matter if they inhibit the reuptake of noradrenaline or serotonin. / Acta Psychiatr Scand 101 [Suppl 402]: 12-7, 2000.
    2. Goodwin FK, Bunney WE Jr. Depressions following reserpine: a reevaluation. / Semin Psychiatry 3: 435-48, 1971.
    3. Clerc GE, Ruimy P, Verdeay-Pailles J. A double blind comparison of venlafaxine and fluoxetine in patients hospitalized for major depression and melancholia. / Intl Clin Psychopharmacol 9: 138-43, 1995.
    4. Guelfi JD, White C, Hackett D, Guichoux JY, Magni G. Effectiveness of venlafaxine in patients hospitalized for major depression and melancholia. / J Clin Psychiatry 56: 450-58, 1995.
    5. Benkert O, Grander G, Wetzel H. Is there an advantage to venlafaxine in comparison with other antidepressants? / Hum Psychopharmacol 12: 53-4, 1997.
    6. de Montigny C, Debonnel G, Bergeron R, St Andre E, Blier P. Venlafaxine in treatment resistant depression: open label multicentre study. / Am Coll Neuropharmacol 34: 158, 1995.
    7. Nierenberg AA, Feigner JP, Rudolph R, Cole JO, Sullivan J. Venlafaxine for treatment resistant unipolar depression. / J Clin Psychopharmacol 4: 419-23, 1994.
    8. Stahl SM, Pradko JF, Haight BR, Modell JG, Rockett CB, Learned-Coughlin S. A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. / Prim Care Companion J Clin Psychiatry 6: 159-66, 2004.
    9. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. / Proc Natl Acad Sci USA 93: 3908-913, 1996.
    10. Duman RS, Charney DS. Cell atrophy and loss in major depression. / Biol Psychiatry 45: 1083-084, 1999.
    11. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, et al. Course of illness, hippocampal function, and hippocampal volume in major depression. / Proc Natl Acad Sci USA 100: 1387-392, 2003.
    12. Frodl T, Meisenzahl EM, Zetzsche T, Born C, Groll C, Jager M, et al. Hippocampal changes in patients with a first episode of major depression. / Am J Psychiatry 159: 1112-118, 2002.
    13. Frodl T, Meisenzahl EM, Zetzsche T, Born C, Jager M, Groll C, et al. Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. / Biol Psychiatry 53: 338-44, 2003.
    14. Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. / Eur Neuropsychopharmacol 12: 527-44, 2002.
    15. Cronholm B, Ottosson JO. Memory functions in endogenous depression before and after electroconvulsive therapy. / Arch Gen Psychiatry 5: 193-99, 1961.
    16. Soares JC, Mann JJ. The anatomy of mood disorders—review of structural neuroimaging studies. [Comment]. / Biological Psychiatry 41: 86-06, 1997.
    17. Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception II: implications for major psychiatric disorders. / Biol Psychiatry 54: 515-28, 2003.
    18. Artigas F, Romero L, de Montigny C, Blier P. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. / Trends Neurosci 19: 378-83, 1996.
    19. Dawson LA, Nguyen HQ, Smith DL, Schechter LE. Effect of chronic fluoxetine and WAY-100635 treatment on serotonergic neurotransmission in the frontal cortex. / J Psychopharmacol 16: 145-52, 2002.
    20. Kreiss DS, Lucki I. Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-hydroxytryptamine measured in vivo. / J Pharmacol Exp Ther 274: 866-76, 1995.
    21. Beyer CE, Boikess S, Luo B, Dawson LA. Comparison of the effects of antidepressants on norepinephrine and serotonin concentrations in the rat frontal cortex: an in-vivo microdialysis study. / J Psychopharmacol 16: 297-04, 2002.
    22. Mitchell PJ, Redfern PH. Potentiation of the time-dependent, antidepressant-induced changes in the agonistic behaviour of resident rats by the 5-HT1A receptor antagonist, WAY-100635. / Behav Pharmacol 8: 585-06, 1997.
    23. Duxon MS, Starr KR, Upton N. Latency to paroxetine-induced anxiolysis in the rat is reduced by co-administration of the 5-HT(1A) receptor antagonist WAY100635. / Br J Pharmacol 130: 1713-719, 2000.
    24. Hogg S, Dalvi A. Acceleration of onset of action in schedule-induced polydipsia: combinations of SSRI and 5-HT1A and 5-HT1B receptor antagonists. / Pharmacol Biochem Behav 77: 69-5, 2004.
    25. Blier P, Bergeron R. The use of pindolol to potentiate antidepressant medication. / J Clin Psychiatry 59 [Suppl 5]: 16-3; discussion 24-5, 1998.
    26. Oficialdegui AM, Martinez J, Perez S, Heras B, Irurzun M, Palop JA, et al. Design, synthesis and biological evaluation of new 3-[(4-aryl)piperazin-1-yl]-1-arylpropane derivatives as potential antidepressants with a dual mode of action: serotonin reuptake inhibition and 5-HT1A receptor antagonism. / Farmaco 55: 345-53, 2000.
    27. Mewshaw RE, Zhou D, Zhou P, Shi X, Hornby G, Spangler T, et al. Studies toward the discovery of the next generation of antidepressants. 3. Dual 5-HT1A and serotonin transporter affinity within a class of N-aryloxyethylindolylalkylamines. / J Med Chem 47: 3823-842, 2004.
    28. Hughes ZA, Starr KR, Langmead CJ, Hill M, Bartoszyk GD, Hagan JJ, et al. Neurochemical evaluation of the novel 5-HT1A receptor partial agonist/serotonin reuptake inhibitor, vilazodone. / Eur J Pharmacol 510: 49-7, 2005.
    29. Cremers TIFH, Bosker FJ, den Boer JA, Westerink BHC, Wikstr?m HV, Hogg S, et al. 5-HT2C antagonists augment the antidepressant effects of SSRIs. Proceedings of the 10th International Conference on / in Vivo Methods, Stockholm, Sweden, 2003.
    30. M?rk A, Hogg S. Augmentation of paroxetine by the 5-HT2 antagonist, irindalone: evidence for increased efficacy. Proceedings of the 10th International Conference on / in Vivo Methods, Stockholm, Sweden, 2003.
    31. Cremers TI, Giorgetti M, Bosker FJ, Hogg S, Arnt J, Mork A, et al. Inactivation of 5-HT(2C) receptors potentiates consequences of serotonin reuptake blockade. / Neuropsychopharmacology 29: 1782-789, 2004.
    32. Gobert A, Rivet JM, Cistarelli L, Melon C, Millan MJ. α2-Adrenergic receptor blockade markedly potentiates duloxetine- and fluoxetine-induced increases in noradrenaline, dopamine, and serotonin levels in the frontal cortex of freely moving rats. / J Neurochem 69: 2616-619, 1997.
    33. Scott JA, Crews FT. Rapid decrease in rat brain / β adrenergic receptor binding during combined antidepressant α-2 antagonist treatment. / J Pharmacol Exp Ther 224: 640-46, 1983.
    34. Masand PS, Gupta S. Long-term side effects of newer-generation antidepressants: SSRIS, venlafaxine, nefazodone, bupropion, and mirtazapine. / Ann Clin Psychiatry 14: 175-82, 2002.
    35. Cappiello A, McDougle CJ, Malison RT, Heninger GR, Price LH. Yohimbine augmentation of fluvoxamine in refractory depression: a single-blind study. / Biol Psychiatry 38: 765-67, 1995.
    36. Sanacora G, Berman RM, Cappiello A, Oren DA, Kugaya A, Liu N, et al. Addition of the α2-antagonist yohimbine to fluoxetine: effects on rate of antidepressant response. / Neuropsychopharmacology 29: 1166-171, 2004.
    37. Cordi AA, Berque-Bestel I, Persigand T, Lacoste JM, Newman-Tancredi A, Audinot V, et al. Potential antidepressants displayed combined α(2)-adrenoceptor antagonist and monoamine uptake inhibitor properties. / J Med Chem 44: 787-05, 2001.
    38. Andres JI, Alcazar J, Alonso JM, Alvarez RM, Bakker MH, Biesmans I, et al. Discovery of a new series of centrally active tricyclic isoxazoles combining serotonin (5-HT) reuptake inhibition with α2-adrenoceptor blocking activity. / J Med Chem 48: 2054-071, 2005.
    39. Randrup A, Braestrup C. Uptake inhibition of biogenic amines by newer antidepressant drugs: relevance to the dopamine hypothesis of depression. / Psychopharmacology (Berl) 53: 309-14, 1977.
    40. Maj J, Rogoz Z. Synergistic effect of pramipexole and sertraline in the forced swimming test. / Pol J Pharmacol 51: 471-75, 1999.
    41. Bouckoms A, Mangini L. Pergolide: an antidepressant adjuvant for mood disorders? / Psychopharmacol Bull 29: 207-11, 1993.
    42. Izumi T, Inoue T, Kitagawa N, Nishi N, Shimanaka S, Takahashi Y, et al. Open pergolide treatment of tricyclic and heterocyclic antidepressant-resistant depression. / J Affect Disord 61: 127-32, 2000.
    43. Sporn J, Ghaemi SN, Sambur MR, Rankin MA, Recht J, Sachs GS, et al. Pramipexole augmentation in the treatment of unipolar and bipolar depression: a retrospective chart review. / Ann Clin Psychiatry 12: 137-40, 2000.
    44. Skolnick P, Popik P, Janowsky A, Beer B, Lippa AS. Antidepressant-like actions of DOV 21,947: a “triple-reuptake inhibitor. / Eur J Pharmacol 461: 99-04, 2003.
    45. Roberts C, Price GW, Jones BJ. The role of 5-HT(1B/1D) receptors in the modulation of 5-hydroxytryptamine levels in the frontal cortex of the conscious guinea pig. / Eur J Pharmacol 326: 23-0, 1997.
    46. Hughes ZA, Dawson LA. Differential autoreceptor control of extracellular 5-HT in guinea pig and rat: species and regional differences. / Psychopharmacology (Berl) 172: 87-3, 2004.
    47. Millan MJ. The role of monoamines in the actions of established and “novel-antidepressant agents: a critical review. / Eur J Pharmacol 500: 371-84, 2004.
    48. Kushida K, Ishida K, Kikuta J, Kato M, Uchiyama T, Taguchi K. α2-Adrenoceptor modulates the release of acetylcholine from the rostral ventrolateral medulla in response to morphine. / Biol Pharm Bull 26: 1548-551, 2003.
    49. Dawson LA, Nguyen HQ. The role of 5-HT(1A) and 5-HT(1B/1D) receptors on the modulation of acute fluoxetine-induced changes in extracellular 5-HT: the mechanism of action of (+/?pindolol. / Neuropharmacology 39: 1044-052, 2000.
    50. Leyson D, Kelder J. Ligands for the 5-HT2C receptor as potential antidepressants and anxiolytics. In: Trends in drug research (van der Groot J, ed). Amsterdam: Elsevier; 49-1, 1998.
    51. Martin JR, Bos M, Jenck F, Moreau J, Mutel V, Sleight AJ, et al. 5-HT2C receptor agonists: pharmacological characteristics and therapeutic potential. / J Pharmacol Exp Ther 286: 913-24, 1998.
    52. Welmaker GS, Nelson JA, Sabalski JE, Sabb AL, Potoski JR, Graziano D, et al. Synthesis and 5-hydroxytryptamine (5-HT) activity of 2,3,4,4a-tetrahydro-1H-pyrazino[1,2-a]quinoxalin-5-(6H)ones and 2,3,4,4a,5,6-hexahydro-1H-pyrazino[1,2-a]quinoxalines. / Bioorg Med Chem Lett 10: 1991-994, 2000.
    53. Kimura Y, Hatanaka K, Naitou Y, Maeno K, Shimada I, Koakutsu A, et al. Pharmacological profile of YM348, a novel, potent and orally active 5-HT2C receptor agonist. / Eur J Pharmacol 483: 37-3, 2004.
    54. Sabb AL, Vogel RL, Welmaker GS, Sabalski JE, Coupet J, Dunlop J, et al. Cycloalkyl[b][1,4]benzodiazepinoindoles are agonists at the human 5-HT2C receptor. / Bioorg Med Chem Lett 14: 2603-607, 2004.
    55. Dunlop J, Sabb AL, Mazandarani H, Zhang J, Kalgaonker S, Shukhina E, et al. WAY-163909 [(7bR, 10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1h i]indole], a novel 5-hydroxytryptamine 2C receptor-selective agonist with anorectic activity. / J Pharmacol Exp Ther 313: 862-69, 2005.
    56. De Foubert G, Murray TK, O’Neill MJ, Zetterstr?m TSC. 5-HT6 receptor-selective upregulation of brain-derived neurotrophic factor mRNA in the rat brain. Federation of European Neuroscience Societies, 2004.
    57. Schechter LE, Smith DL, Li P, Lin Q, Rosenzweig-Lipson S, Robichaud A, et al. Pharmacological profile of a novel and selective 5-HT6 receptor agonist: WAY-466. The EPHAR Satellite Meeting on Serotonin, Porto, Portugal, 2004.
    58. Cryan JF, Lucki I. Antidepressant-like behavioral effects mediated by 5-hydroxytryptamine(2C) receptors. / J Pharmacol Exp Ther 295: 1120-126, 2000.
    59. Moreau JL, Bos M, Jenck F, Martin JR, Mortas P, Wichmann J. 5HT2C receptor agonists exhibit antidepressant-like properties in the anhedonia model of depression in rats. / Eur Neuropsychopharmacol 6: 169-75, 1996.
    60. Mitchell PJ, Redfern PH. Animal models of depressive illness: the importance of chronic drug treatment. / Curr Pharm Des 11: 171-03, 2005.
    61. Moreau JL, Jenck F, Martin JR, Perrin S, Haefely WE. Effects of repeated mild stress and two antidepressant treatments on the behavioral response to 5HT1C receptor activation in rats. / Psychopharmacology (Bed) 110: 140-44, 1993.
    62. Chou-Green JM, Holscher TD, Dallman MF, Akana SF. Compulsive behavior in the 5-HT2C receptor knockout mouse. / Physiol Behav 78: 641-49, 2003.
    63. Bos M, Jenck F, Martin JR, Moreau JL, Sleight AJ, Wichmann J, et al. Novel agonists of 5HT2C receptors. Synthesis and biological evaluation of substituted 2-(indol-1-yl)-1-methylethylamines and 2-(indeno[1,2-b]pyrrol-1-yl)-1-methylethylamines. Improved therapeutics for obsessive compulsive disorder. / J Med Chem 40: 2762-769, 1997.
    64. Woods A, Smith C, Szewczak M, Dunn RW, Cornfeldt M, Corbett R. Selective serotonin re-uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. / Psychopharmacology (Berl) 112: 195-98, 1993.
    65. Jenck F, Moreau JL, Berendsen HH, Boes M, Broekkamp CL, Martin JR, et al. Antiaversive effects of 5HT2C receptor agonists and fluoxetine in a model of panic-like anxiety in rats. / Eur Neuropsychopharmacol 8: 161-68, 1998.
    66. Sanacora G, Mason GF, Rothman DL, Krystal JH. Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. / Am J Psychiatry 159: 663-65, 2002.
    67. Woolley M, Marsden C, Sleight A, Fone K. Co-localization of 5-HT6 receptors on GABAergic but not cholinergic neurones in the adult brain. Society for Neuroscience Satellite Symposium: Serotonin: from the molecule to the clinic, San Diego, CA, 2001.
    68. Carlsson ML. On the role of cortical glutamate in obsessive-compulsive disorder and attention-deficit hyperactivity disorder, two phenomenologically antithetical conditions. / Acta Psychiatr Scand 102: 401-13, 2000.
    69. Stein DJ. Neurobiology of the obsessive-compulsive spectrum disorders. / Biol Psychiatry 47: 296-04, 2000.
    70. Russo-Neustadt AA, Chen MJ. Brain-derived neurotrophic factor and antidepressant activity. / Curr Pharm Des 11: 1495-510, 2005.
    71. Bagley J, Moghaddam B. Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. / Neuroscience 77: 65-3, 1997.
    72. Lowy MT, Wittenberg L, Yamamoto BK. Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats. / J Neurochem 65: 268-74, 1995.
    73. Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R. Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. / Pharmacopsychiatry 29: 23-6, 1996.
    74. Petrie RX, Reid IC, Stewart CA. The N-methyl-D-aspartate receptor, synaptic plasticity, and depressive disorder. A critical review. / Pharmacol Ther 87: 11-5, 2000.
    75. Waxman EA, Lynch DR. N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. / Neuroscientist 11: 37-9, 2005.
    76. Papp M, Moryl E. Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. / Eur J Pharmacol 263: 1-, 1994.
    77. Kos T, Popik P. A comparison of the predictive therapeutic and undesired side-effects of the NMDA receptor antagonist, memantine, in mice. / Behav Pharmacol 16: 155-61, 2005.
    78. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. / Biol Psychiatry 47: 351-54, 2000.
    79. Keilhoff G, Bernstein HG, Becker A, Grecksch G, Wolf G. Increased neurogenesis in a rat ketamine model of schizophrenia. / Biol Psychiatry 56: 317-22, 2004.
    80. National Institute of Mental Health (NIMH). A double-blind randomized placebo-controlled trial of felbamate in treatment resistant bipolar depression. Year initiated: 2002. Clinical Trials Identifier: NCT00034229.
    81. Paul IA, Layer RT, Skolnick P, Nowak G. Adaptation of the NMDA receptor in rat cortex following chronic electroconvulsive shock or imipramine. / Eur J Pharmacol 247: 305-11, 1993.
    82. Anthony EW, Nevins ME. Anxiolytic-like effects of N-methyl-D-aspartate-associated glycine receptor ligands in the rat potentiated startle test. / Eur J Pharmacol 250: 317-24, 1993.
    83. Klodzinska A, Chojnacka-Wojcik E. Anticonflict effect of the glycineB receptor partial agonist, D-cycloserine, in rats. Pharmacological analysis. / Psychopharmacology (Berl) 152: 224-28, 2000.
    84. Murray F, Kennedy J, Hutson PH, Elliot J, Huscroft I, Mohnen K, et al. Modulation of [3H]MK-801 binding to NMDA receptors in vivo and in vitro. / Eur J Pharmacol 397: 263-70, 2000.
    85. Fraser CM, Cooke MJ, Fisher A, Thompson ID, Stone TW. Interactions between ifenprodil and dizocilpine on mouse behaviour in models of anxiety and working memory. / Eur Neuropsychopharmacol 6: 311-16, 1996.
    86. Lynch G. Memory and the brain: unexpected chemistries and a new pharmacology. / Neurobiol Learn Mem 70: 82-00, 1998.
    87. Skolnick P, Legutko B, Li X, Bymaster FP. Current perspectives on the development of non-biogenic amine-based antidepressants. / Pharmacol Res 43: 411-23, 2001.
    88. Bai F, Li X, Clay M, Lindstrom T, Skolnick P. Infra- and interstrain differences in models of “behavioral despair.- / Pharmacol Biochem Behav 70: 187-92, 2001.
    89. Li X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P. Antidepressant-like actions of an AMPA receptor potentiator (LY392098). / Neuropharmacology 40: 1028-033, 2001.
    90. Knapp RJ, Goldenberg R, Shuck C, Cecil A, Watkins J, Miller C, et al. Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model. / Eur J Pharmacol 440: 27-5, 2002.
    91. Wang JQ, Tang Q, Parelkar NK, Liu Z, Samdani S, Choe ES, et al. Glutamate signaling to Ras-MAPK in striatal neurons: mechanisms for inducible gene expression and plasticity. / Mol Neurobiol 29: 1-4, 2004.
    92. Mackowiak M, O’Neill MJ, Hicks CA, Bleakman D, Skolnick P. An AMPA receptor potentiator modulates hippocampal expression of BDNF: an in vivo study. / Neuropharmacology 43: 1-0, 2002.
    93. Duman RS. Synaptic plasticity and mood disorders. / Mol Psychiatry 7 [Suppl 1]: S29-S34, 2002.
    94. Pin JP, Acher F. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. / Curr Drug Targets CNS Neurol Disord 1: 297-17, 2002.
    95. Spooren WP, Gasparini F, Salt TE, Kuhn R. Novel allosteric antagonists shed light on mglu(5) receptors and CNS disorders. / Trends Pharmacol Sci 22: 331-37, 2001.
    96. Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E, Palucha A, Gasparini F, Kuhn R, et al. Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. / Br J Pharmacol 132: 1423-430, 2001.
    97. Pilc A, Klodzinska A, Branski P, Nowak G, Palucha A, Szewczyk B, et al. Multiple MPEP administrations evoke anxiolytic- and antidepressant-like effects in rats. / Neuropharmacology 43: 181-87, 2002.
    98. Busse CS, Brodkin J, Tattersall D, Anderson JJ, Warren N, Tehrani L, et al. The behavioral profile of the potent and selective mGlu5 receptor antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) in rodent models of anxiety. / Neuropsychopharmacology 29: 1971-979, 2004.
    99. Brodkin J, Bradbury M, Busse C, Warren N, Bristow LJ, Varney MA. Reduced stress-induced hyperthermia in mGluR5 knockout mice. / Eur J Neurosci 16: 2241-244, 2002.
    100. Page ME, Szeliga P, Gasparini F, Cryan JF. Blockade of the mGlu5 receptor decreases basal and stress-induced cortical norepinephrine in rodents. / Psychopharmacology (Berl) 179: 240-46, 2005.
    101. Steckler T, Lavreysen H, Oliveira AM, Aerts N, Van Craenendonck H, Prickaerts J, et al. Effects of mGlul receptor blockade on anxiety-related behaviour in the rat lick suppression test. / Psychopharmacology (Berl) 179: 198-06, 2005.
    102. Tatarczynska E, Klodzinska A, Kroczka B, Chojnacka-Wojcik E, Pilc A. The antianxiety-like effects of antagonists of group I and agonists of group II and III metabotropic glutamate receptors after intrahippocampal administration. / Psychopharmacology (Berl) 158: 94-9, 2001.
    103. Chaki S, Yoshikawa R, Hirota S, Shimazaki T, Maeda M, Kawashima N, et al. MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity. / Neuropharmacology 46: 457-67, 2004.
    104. Karasawa J, Shimazaki T, Kawashima N, Chaki S. AMPA receptor stimulation mediates the antidepressant-like effect of a group II metabotropic glutamate receptor antagonist. / Brain Res 1042: 92-8, 2005.
    105. Kawashima N, Karasawa J, Shimazaki T, Chaki S, Okuyama S, Yasuhara A, et al. Neuropharmacological profiles of antagonists of group II metabotropic glutamate receptors. / Neurosci Lett 378: 131-34, 2005.
    106. Schoepp DD, Wright RA, Levine LR, Gaydos B, Potter WZ. LY354740, an mGlu2/3 receptor agonist as a novel approach to treat anxiety/stress. / Stress 6: 189-97, 2003.
    107. Schoepp DD. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. / J Pharmacol Exp Ther 299: 12-0, 2001.
    108. Palucha A, Tatarczynska E, Branski P, Szewczyk B, Wieronska JM, Klak K, et al. Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats. / Neuropharmacology 46: 151-59, 2004.
    109. Tatarczynska E, Palucha A, Szewczyk B, Chojnacka-Wojcik E, Wieronska J, Pilc A. Anxiolytic- and antidepressant-like effects of group III metabotropic glutamate agonist (1S,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid (ACPT-I) in rats. / Pol J Pharmacol 54: 707-10, 2002.
    110. Stachowicz K, Klak K, Klodzinska A, Chojnacka-Wojcik E, Pilc A. Anxiolytic-like effects of PHCCC, an allosteric modulator of mGlu4 receptors, in rats. / Eur J Pharmacol 498: 153-56, 2004.
    111. Pelkey KA, Lavezzari G, Racca C, Roche KW, McBain CJ. mGluR7 is a metaplastic switch controlling bidirectional plasticity of feedforward inhibition. / Neuron 46: 89-02, 2005.
    112. Cryan JF, Kelly PH, Neijt HC, Sansig G, Flor PJ, van Der Putten H. Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. / Eur J Neurosci 17: 2409-417, 2003.
    113. Somogyi P, Dalezios Y, Lujan R, Roberts JD, Watanabe M, Shigemoto R. High level of mGluR7 in the presynaptic active zones of select populations of GABAergic terminals innervating intemeurons in the rat hippocampus. / Eur J Neurosci 17: 2503-520, 2003.
    114. Linden AM, Johnson BG, Peters SC, Shannon HE, Tian M, Wang Y, et al. Increased anxiety-related behavior in mice deficient for metabotropic glutamate 8 (mGlu8) receptor. / Neuropharmacology 43: 251-59, 2002.
    115. Gerlai R, Adams B, Fitch T, Chaney S, Baez M. Performance deficits of mGluR8 knockout mice in learning tasks: the effects of null mutation and the background genotype. / Neuropharmacology 43: 235-49, 2002.
    116. Gerner RH, Hare TA. CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. / Am J Psychiatry 138: 1098-101, 1981.
    117. Gold BI, Bowers MB Jr, Roth RH, Sweeney DW. GABA levels in CSF of patients with psychiatric disorders. / Am J Psychiatry 137: 362-64, 1980.
    118. Kasa K, Otsuki S, Yamamoto M, Sato M, Kuroda H, Ogawa N. Cerebrospinal fluid γ-aminobutyric acid and homovanillic acid in depressive disorders. / Biol Psychiatry 17: 877-83, 1982.
    119. Petty F, Sherman AD. Plasma GABA levels in psychiatric illness. / J Affect Disord 6: 131-38, 1984.
    120. Sanacora G, Mason GF, Rothman DL, Behar KL, Hyder F, Petroff OAC, et al. Reduced cortical γ-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. / Arch Gen Psychiatry 56: 1043-047, 1999.
    121. Petty F, Steinberg J, Kramer GL, Fulton M, Moeller FG. Desipramine does not alter plasma GABA in patients with major depression. / J Affect Disord 29: 53-6, 1993.
    122. Sundman-Eriksson I, Allard P. [3H]Tiagabine binding to GABA transporter-1 (GAT-1) in suicidal depression. / J Affect Disord 71: 29-3, 2002.
    123. Cheetham SC, Crompton MR, Katona CL, Parker SJ, Horton RW. Brain GABAA/benzodiazepine binding sites and glutamic acid decarboxylase activity in depressed suicide victims. / Brain Res 460: 114-23, 1988.
    124. Cross JA, Cheetham SC, Crompton MR, Katona CL, Horton RW. Brain GABAB binding sites in depressed suicide victims. / Psychiatry Res 26: 119-29, 1988.
    125. Paul SM, Purdy RH. Neuroactive steroids. / FASEB J 6: 2311-322, 1992.
    126. Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, et al. Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. / Proc Natl Acad Sci USA 95: 3239-244, 1998.
    127. Str?hle A, Romeo E, Hermann B, Pasini A, Spalletta G, di Michele F, et al. Concentrations of 3α-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery. / Biol Psychiatry 45: 274-77, 1999.
    128. Uzunov DP, Cooper TB, Costa E, Guidotti A. Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. / Proc Natl Acad Sci USA 93: 12599-2604, 1996.
    129. Khisti RT, Chopde CT, Jain SP. Antidepressant-like effect of the neurosteroid 3 α-hydroxy-5 α-pregnan-20-one in mice forced swim test. / Pharmacol Biochem Behav 67: 137-43, 2000.
    130. Molina-Hernandez M, Tellez-Alcantara NP, Perez Garcia J, Olivera Lopez JI, Teresa Jaramillo M. Antidepressant-like actions of intra-accumbens infusions of allopregnanolone in ovariectomized Wistar rats. / Pharmacol Biochem Behav 80: 401-09, 2005.
    131. Uzunova V, Wrynn AS, Kinnunen A, Ceci M, Kohler C, Uzunov DP. Chronic antidepressants reverse cerebrocortical allopregnanolone decline in the olfactory-bulbectomized rat. / Eur J Pharmacol 486: 31-4, 2004.
    132. Griffin LD, Mellon SH. Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. / Proc Natl Acad Sci USA 96: 13512-3517, 1999.
    133. Gray JA, Green AR. Increased GABAB receptor function in mouse frontal cortex after repeated administration of antidepressant drugs or electroconvulsive shocks. / Br J Pharmacol 92: 357-62, 1987.
    134. Lloyd KG, Thuret F, Pilc A. Upregulation of γ-aminobutyric acid (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. / J Pharmacol Exp Ther 235: 191-99, 1985.
    135. Pratt GD, Bowery NG. Repeated administration of desipramine and a GABAB receptor antagonist, CGP 36742, discretely upregulates GABAB receptor binding sites in rat frontal cortex. / Br J Pharmacol 110: 724-35, 1993.
    136. Sands SA, Reisman SA, Enna SJ. Effect of antidepressants on GABAB receptor function and subunit expression in rat hippocampus. / Biochem Pharmacol 68: 1489-495, 2004.
    137. Szekely AM, Barbaccia ML, Costa E. Effect of a protracted antidepressant treatment on signal transduction and [3H](-)-baclofen binding at GABAB receptors. / J Pharmacol Exp Ther 243: 155-59, 1987.
    138. Cross JA, Horton RW. Are increases in GABAB receptors consistent findings following chronic antidepressant administration? / Eur J Pharmacol 141: 159-62, 1987.
    139. McManus DJ, Greenshaw AJ. Differential effects of antidepressants on GABAB and β-adrenergic receptors in rat cerebral cortex. / Biochem Pharmacol 42: 1525-528, 1991.
    140. Dennis T, Beauchemin V, Lavoie N. Differential effects of olfactory bulbectomy on GABAA and GABAB receptors in the rat brain. / Pharmacol Biochem Behav 46: 77-2, 1993.
    141. Martin P, Pichat P, Massol J, Soubrie P, Lloyd KG, Puech AJ. Decreased GABA B receptors in helpless rats: reversal by tricyclic antidepressants. / Neuropsychobiology 22: 220-24, 1989.
    142. Dennis T, Beauchemin V, Lavoie N. Antidepressant-induced modulation of GABAA receptors and β-adrenoceptors but not GABAB receptors in the frontal cortex of olfactory bulbectomised rats. / Eur J Pharmacol 262: 143-48, 1994.
    143. Nakagawa Y, Sasaki A, Takashima T. The GABAB receptor antagonist CGP36742 improves learned helplessness in rats. / Eur J Pharmacol 381: 1-, 1999.
    144. Slattery DA, Desrayaud S, Cryan JF. GABAB receptor antagonist-mediated antidepressant-like behavior is serotonin-dependent. / J Pharmacol Exp Ther 312: 290-96, 2005.
    145. Mombereau C, Kaupmann K, Froestl W, Sansig G, van der Putten H, Cryan JF. Genetic and pharmacological evidence of a role for GABAB receptors in the modulation of anxiety- and antidepressant-like behavior. / Neuropsychopharmacology 29: 1050-062, 2004.
    146. Heese K, Otten U, Mathivet P, Raiteri M, Marescaux C, Bernasconi R. GABAB receptor antagonists elevate both mRNA and protein levels of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) but not neurotrophin-3 (NT-3) in brain and spinal cord of rats. / Neuropharmacology 39: 449-62, 2000.
    147. Bowery NG. GABAB receptor pharmacology. / Annu Rev Pharmacol Toxicol 33: 109-47, 1993.
    148. Sakamaki K, Nomura M, Hatakenaka S, Miyakubo H, Tanaka J. GABAergic modulation of noradrenaline release in the median preoptic nucleus area in the rat. / Neurosci Lett 342: 77-0, 2003.
    149. Robichaud M, Debonnel G. Modulation of the firing activity of female dorsal raphe nucleus serotonergic neurons by neuroactive steroids. / J Endocrinol 182: 11-1, 2004.
    150. Abellan MT, Jolas T, Aghajanian GK, Artigas F. Dual control of dorsal raphe serotonergic neurons by GABAB receptors. Electrophysiological and microdialysis studies. / Synapse 36: 21-4, 2000.
    151. Tao R, Auerbach SB. Influence of inhibitory and excitatory inputs on serotonin efflux differs in the dorsal and median raphe nuclei. / Brain Res 961: 109-20, 2003.
    152. Matsumoto M, Kanno M, Togashi H, Ueno K, Otani H, Mano Y, et al. Involvement of GABAA receptors in the regulation of the prefrontal cortex on dopamine release in the rat dorsolateral striatum. / Eur J Pharmacol 482: 177-84, 2003.
    153. Fadda P, Scherma M, Fresu A, Collu M, Fratta W. Baclofen antagonizes nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of rat. / Synapse 50: 1-, 2003.
    154. Minamino N, Masuda H, Kangawa K, Matsuo H. Regional distribution of neuromedin K and neuromedin L in rat brain and spinal cord. / Biochem Biophys Res Commun 124: 731-38, 1984.
    155. Rupniak NM, Kramer MS. Discovery of the antidepressant and anti-emetic efficacy of substance P receptor (NK1) antagonists. / Trends Pharmacol Sci 20: 485-90, 1999.
    156. Saito R, Takano Y, Kamiya HO. Roles of substance P and NK(1) receptor in the brainstem in the development of emesis. / J Pharmacol Sci 91: 87-4, 2003.
    157. Culman J, Unger T. Central tachykinins: mediators of defence reaction and stress reactions. / Can J Physiol (Lond) Pharmacol 73: 885-91, 1995.
    158. Takayama H, Ota Z, Ogawa N. Effect of immobilization stress on neuropeptides and their receptors in rat central nervous system. / Regul Pept 15: 239-48, 1986.
    159. Vaupel R, Jarry H, Schlomer HT, Wuttke W. Differential response of substance P-containing subtypes of adrenomedullary cells to different stressors. / Endocrinology 123: 2140-145, 1988.
    160. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. / Science 281: 1640-645, 1998.
    161. Unger T, Carolus S, Demmert G, Ganten D, Lang RE, Maser-Gluth C, et al. Substance P induces a cardiovascular defense reaction in the rat: pharmacological characterization. / Circ Res 63: 812-20, 1988.
    162. Van Wimersma Greidanus TB, Maigret C. Grooming behavior induced by substance P. / Eur J Pharmacol 154: 217-20, 1988.
    163. Rimon R, Le Greves P, Nyberg F, Heikkila L, Salmela L, Terenius L. Elevation of substance P-like peptides in the CSF of psychiatric patients. / Biol Psychiatry 19: 509-16, 1984.
    164. Regoli D, Boudon A, Fauchere JL. Receptors and antagonists for substance P and related peptides. / Pharmacol Rev 46: 551-99, 1994.
    165. Quartara L, Maggi CA. The tachykinin NK1 receptor. Part II: distribution and pathophysiological roles. / Neuropeptides 32: 1-9, 1998.
    166. Adell A. Antidepressant properties of substance P antagonists: relationship to monoaminergic mechanisms? / Curr Drug Targets CNS Neurol Disord 3: 113-21, 2004.
    167. Herpfer I, Lieb K. Substance P receptor antagonists in psychiatry: rationale for development and therapeutic potential. / CNS Drugs 19: 275-93, 2005.
    168. Montgomery SA, Keller M, Ball W, Morrison M, Snavely D, Liu G, et al. S. 13.05 peptide approaches in the treatment of major depression—lack of efficacy of the substance P (neurokininl receptor) antagonist aprepitant. / Eur Neuropsychopharmacol 14: S136-S137, 2004.
    169. Joos GF, Pauwels RA. Tachykinin receptor antagonists: potential in airways diseases. / Curr Opin Pharmacol 1: 235-41, 2001.
    170. Griebel G, Perrault G, Soubrie P. Effects of SR48968, a selective non-peptide NK2 receptor antagonist on emotional processes in rodents. / Psychopharmacology (Berl) 158: 241-51, 2001.
    171. Steinberg R, Alonso R, Griebel G, Bert L, Jung M, Oury-Donat F, et al. Selective blockade of neurokinin-2 receptors produces antidepressant-like effects associated with reduced corticotropinreleasing factor function. / J Pharmacol Exp Ther 299: 449-58, 2001.
    172. Froger N, Gardier AM, Moratalla R, Alberti I, Lena I, Boni C, et al. 5-Hydroxytryptamine (5-HT)1A autoreceptor adaptive changes in substance P (neurokinin 1) receptor knock-out mice mimic antidepressant-induced desensitization. / J Neurosci 21: 8188-197, 2001.
    173. Guiard BP, Przybylski C, Guilloux JP, Seif I, Froger N, De Felipe C, et al. Blockade of substance P (neurokinin 1) receptors enhances extracellular serotonin when combined with a selective serotonin reuptake inhibitor: an in vivo microdialysis study in mice. / J Neurochem 89: 54-3, 2004.
    174. Ryckmans T, Berton O, Grimee R, Kogej T, Lamberty Y, Pasau P, et al. Dual NK(1) antagonists—serotonin reuptake inhibitors as potential antidepressants. Part 2: SAR and activity of benzyloxyphenethyl piperazine derivatives. / Bioorg Med Chem Lett 12: 3195-198, 2002.
    175. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. / Science 213: 1394-397, 1981.
    176. Dunn AJ, Berridge CW. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? / Brain Res Brain Res Rev 15: 71-00, 1990.
    177. Sawchenko PE, Imaki T, Potter E, Kovacs K, Imaki J, Vale W. The functional neuroanatomy of corticotropin-releasing factor. / Ciba Found Symp 172: 5-1; discussion 21-9, 1993.
    178. Parker KJ, Schatzberg AF, Lyons DM. Neuroendocrine aspects of hypercortisolism in major depression. / Horm Behav 43: 60-6, 2003.
    179. Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB. The role of corticotropin-releasing factor in depression and anxiety disorders. / J Endocrinol 160: 1-2, 1999.
    180. Kasckow JW, Baker D, Geracioti TD Jr. Corticotropin-releasing hormone in depression and post-traumatic stress disorder. / Peptides 22: 845-51, 2001.
    181. Owens MJ, Nemeroff CB. The role of corticotropin-releasing factor in the pathophysiology of affective and anxiety disorders: laboratory and clinical studies. / Ciba Found Symp 172: 296-08; discussion 308-216, 1993.
    182. Bissette G, Klimek V, Pan J, Stockmeier C, Ordway G. Elevated concentrations of CRF in the locus coeruleus of depressed subjects. / Neuropsychopharmacology 28: 1328-335, 2003.
    183. Mansbach RS, Brooks EN, Chen YL. Antidepressant-like effects of CP-154,526, a selective CRF1 receptor antagonist. / Eur J Pharmacol 323: 21-6, 1997.
    184. Ducottet C, Griebel G, Belzung C. Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. / Prog Neuropsychopharmacol Biol Psychiatry 27: 625-31, 2003.
    185. Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, et al. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. / J Pharmacol Exp Ther 301: 333-45, 2002.
    186. Overstreet DH, Griebel G. Antidepressant-like effects of CRF1 receptor antagonist SSR125543 in an animal model of depression. / Eur J Pharmacol 497: 49-3, 2004.
    187. Chaki S, Nakazato A, Kennis L, Nakamura M, Mackie C, Sugiura M, et al. Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450. / Eur J Pharmacol 485: 145-58, 2004.
    188. Zobel AW, Nickel T, Kunzel HE, Ackl N, Sonntag A, Ising M, et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. / J Psychiatr Res 34: 171-81, 2000.
    189. Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, et al. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. / J Comp Neurol 319: 218-45, 1992.
    190. Lembo PM, Grazzini E, Cao J, Hubatsch DA, Pelletier M, Hoffert C, et al. The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. / Nat Cell Biol 1: 267-71, 1999.
    191. Georgescu D, Sears RM, Hommel JD, Barrot M, Bolanos CA, Marsh DJ, et al. The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. / J Neurosci 25: 2933-940, 2005.
    192. Kennedy AR, Todd JF, Dhillo WS, Seal LJ, Ghatei MA, O’Toole CP, et al. Effect of direct injection of melanin-concentrating hormone into the paraventricular nucleus: further evidence for a stimulatory role in the adrenal axis via SLC-1. / J Neuroendocrinol 15: 268-72, 2003.
    193. Borowsky B, Durkin MM, Ogozalek K, Marzabadi MR, DeLeon J, Lagu B, et al. Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. / Nat Med 8: 825-30, 2002.
    194. Chaki S, Funakoshi T, Hirota-Okuno S, Nishiguchi M, Shimazaki T, Iijima M, et al. Anxiolytic- and antidepressant-like profile of ATC0065 and ATC0175: nonpeptidic and orally active melaninconcentrating hormone receptor 1 antagonists. / J Pharmacol Exp Ther 313: 831-39, 2005.
    195. Takekawa S, Asami A, Ishihara Y, Terauchi J, Kato K, Shimomura Y, et al. T-226296: a novel, orally active and selective melanin-concentrating hormone receptor antagonist. / Eur J Pharmacol 438: 129-35, 2002.
    196. Ring RH. The central vasopressinergic system: examining the opportunities for psychiatric drug development. / Curr Pharm Des 11: 205-25, 2005.
    197. Gold PW, Goodwin FK, Reus VI. Vasopressin in affective illness. / Lancet 1: 1233-236, 1978.
    198. van Londen L, Goekoop JG, van Kempen GM, Frankhuijzen-Sierevogel AC, Wiegant VM, van der Velde EA, et al. Plasma levels of arginine vasopressin elevated in patients with major depression. / Neuropsychopharmacology 17: 284-92, 1997.
    199. de Winter RF, van Hemert AM, DeRijk RH, Zwinderman KH, Frankhuijzen-Sierevogel AC, Wiegant VM, et al. Anxious-retarded depression: relation with plasma vasopressin and cortisol. / Neuropsychopharmacology 28: 140-47, 2003.
    200. Hernando F, Schoots O, Lolait SJ, Burbach JP. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. / Endocrinology 142: 1659-668, 2001.
    201. Serradeil-Le Gal C, Wagnon J, Simiand J, Griebel G, Lacour C, Guillon G, et al. Characterization of (2S,4R)-1-[5-chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidine carboxamide (SSR149415), a selective and orally active vasopressin V1b receptor antagonist. / J Pharmacol Exp Ther 300: 1122-130, 2002.
    202. Griebel G, Stemmelin J, Gal CS, Soubrie P. Non-peptide vasopressin V1b receptor antagonists as potential drugs for the treatment of stress-related disorders. / Curr Pharm Des 11: 1549-559, 2005.
    203. Griebel G, Simiand J, Stemmelin J, Gal CS, Steinberg R. The vasopressin V1b receptor as a therapeutic target in stress-related disorders. / Curr Drug Targets CNS Neurol Disord 2: 191-00, 2003.
    204. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. / Neuron 34: 13-5, 2002.
    205. Duman RS, Nakagawa S, Malberg J. Regulation of adult neurogenesis by antidepressant treatment. / Neuropsychopharmacology 25: 836-44, 2001.
    206. Malberg JE, Schechter LE. Increasing hippocampal neurogenesis: a novel mechanism for antidepressant drugs. / Curr Pharm Des 11: 145-55, 2005.
    207. Conti AC, Blendy JA. Regulation of antidepressant activity by cAMP response element binding proteins. / Mol Neurobiol 30: 143-55, 2004.
    208. Takahashi T, Nowakowski RS, Caviness VS Jr. BUdR as an S-phase marker for quantitative studies of cytokinetic behaviour in the murine cerebral ventricular zone. / J Neurocytol 21: 185-97, 1992.
    209. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. / Biol Psychiatry 50: 260-65, 2001.
    210. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. / Arch Gen Psychiatry 60: 804-15, 2003.
    211. Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). / Pharmacol Biochem Behav 56: 131-37, 1997.
    212. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. / J Neurosci 22: 3251-261, 2002.
    213. Eisch AJ, Bolanos CA, de Wit J, Simonak RD, Pudiak CM, Barrot M, et al. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. / Biol Psychiatry 54: 994-005, 2003.
    214. Chen AC, Shirayama Y, Shin KH, Neve RL, Duman RS. Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. / Biol Psychiatry 49: 753-62, 2001.
    215. Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlezon WA Jr. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. / J Neurosci 21: 7397-403, 2001.
    216. Conti AC, Cryan JF, Dalvi A, Lucki I, Blendy JA. cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. / J Neurosci 22: 3262-268, 2002.
    217. Dias BG, Banerjee SB, Duman RS, Vaidya VA. Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. / Neuropharmacology 45: 553-63, 2003.
    218. Chourbaji S, Hellweg R, Brandis D, Zorner B, Zacher C, Lang UE, et al. Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior. / Brain Res Mol Brain Res 121: 28-6, 2004.
    219. Olofsdotter K, Lindvall O, Asztely F. Increased synaptic inhibition in dentate gyrus of mice with reduced levels of endogenous brain-derived neurotrophic factor. / Neuroscience 101: 531-39, 2000.
    220. Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. / J Neurosci 23: 349-57, 2003.
    221. Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T, et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. / Proc Natl Acad Sci USA 101: 10827-0832, 2004.
    222. Froestl W, Gallagher M, Jenkins H, Madrid A, Melcher T, Teichman S, et al. SGS742: the first GABA(B) receptor antagonist in clinical trials. / Biochem Pharmacol 68: 1479-487, 2004.
    223. Pardridge WM. CNS drug design based on principles of blood-brain barrier transport. / J Neurochem 70: 1781-792, 1998.
    224. Pollack SJ, Harper SJ. Small molecule Trk receptor agonists and other neurotrophic factor mimetics. / Curr Drug Targets CNS Neurol Disord 1: 59-0, 2002.
    225. Bruno MA, Clarke PB, Seltzer A, Quirion R, Burgess K, Cuello AC, et al. Long-lasting rescue of age-associated deficits in cognition and the CNS cholinergic phenotype by a partial agonist peptidomimetic ligand of TrkA. / J Neurosci 24: 8009-018, 2004.
    226. Coyle JT, Duman RS. Finding the intracellular signaling pathways affected by mood disorder treatments. / Neuron 38: 157-60, 2003.
    227. Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, et al. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. / J Neurosci 23: 7311-316, 2003.
    228. Dawson TM, Ginty DD. CREB family transcription factors inhibit neuronal suicide. / Nat Med 8: 450-51, 2002.
    229. Malberg JE, Duman RS. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. / Neuropsychopharmacology 28: 1562-571, 2003.
    230. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. / J Neurosci 20: 9104-110, 2000.
    231. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. / Science 301: 805-09, 2003.
    232. Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. / J Neurosci 20: 2896-903, 2000.
    233. Hoshaw BA, Malberg JE, Lucki I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. / Brain Res 037: 204-08, 2005.
    234. Kurihara S, Hakuno F, Takahashi S. Insulin-like growth factor-I-dependent signal transduction pathways leading to the induction of cell growth and differentiation of human neuroblastoma cell line SH-SY5Y: the roles of MAP kinase pathway and PI 3-kinase pathway. / Endocr J 47: 739-51, 2000.
    235. Aberg MA, Aberg ND, Palmer TD, Alborn AM, Carlsson-Skwirut C, Bang P, et al. IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. / Mol Cell Neurosci 24: 23-0, 2003.
    236. Banasr M, Hery M, Printemps R, Daszuta A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. / Neuropsychopharmacology 29: 450-60, 2004.
  • 作者单位:Lee E. Schechter (1)
    Robert H. Ring (1)
    Chad E. Beyer (1)
    Zo? A. Hughes (1)
    Xavier Khawaja (1)
    Jessica E. Malberg (1)
    Sharon Rosenzweig-Lipson (1)

    1. Neuroscience Discovery, Depression and Anxiety Research, Wyeth, CN 8000, 08543, Princeton, NJ
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700