Elucidating a normal function of huntingtin by functional and microarray analysis of huntingtin-null mouse embryonic fibroblasts
详细信息    查看全文
  • 作者:Hua Zhang (1)
    Sudipto Das (2)
    Quan-Zhen Li (3)
    Ioannis Dragatsis (4)
    Joyce Repa (1)
    Scott Zeitlin (5)
    Gy?rgy Hajnóczky (2)
    Ilya Bezprozvanny (1)
  • 刊名:BMC Neuroscience
  • 出版年:2008
  • 出版时间:December 2008
  • 年:2008
  • 卷:9
  • 期:1
  • 全文大小:1932KB
  • 参考文献:1. MacDonald ME: Huntingtin: alive and well and working in middle management. / Sci STKE 2003, 2003:pe48. CrossRef
    2. Li SH, Li XJ: Huntingtin-protein interactions and the pathogenesis of Huntington's disease. / Trends Genet 2004, 20:146-54. CrossRef
    3. Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L, / et al.: Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. / Nature 1995, 378:403-06. CrossRef
    4. Ferrante RJ, Gutekunst CA, Persichetti F, McNeil SM, Kowall NW, Gusella JF, MacDonald ME, Beal MF, Hersch SM: Heterogeneous topographic and cellular distribution of huntingtin expression in the normal human neostriatum. / J Neurosci 1997, 17:3052-063.
    5. Fusco FR, Chen Q, Lamoreaux WJ, Figueredo-Cardenas G, Jiao Y, Coffman JA, Surmeier DJ, Honig MG, Carlock LR, Reiner A: Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington's disease. / J Neurosci 1999, 19:1189-202.
    6. DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C, Martin E, Vonsattel JP, Carraway R, Reeves SA, / et al.: Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. / Neuron 1995, 14:1075-081. CrossRef
    7. Velier J, Kim M, Schwarz C, Kim TW, Sapp E, Chase K, Aronin N, DiFiglia M: Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. / Exp Neurol 1998, 152:34-0. CrossRef
    8. Kegel KB, Meloni AR, Yi Y, Kim YJ, Doyle E, Cuiffo BG, Sapp E, Wang Y, Qin ZH, Chen JD, Nevins JR, Aronin N, DiFiglia M: Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. / J Biol Chem 2002, 277:7466-476. CrossRef
    9. Cattaneo E, Zuccato C, Tartari M: Normal huntingtin function: an alternative approach to Huntington's disease. / Nat Rev Neurosci 2005, 6:919-30. CrossRef
    10. Nasir J, Floresco SB, O'Kusky JR, Diewert VM, Richman JM, Zeisler J, Borowski A, Marth JD, Phillips AG, Hayden MR: Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. / Cell 1995, 81:811-23. CrossRef
    11. Duyao MP, Auerbach AB, Ryan A, Persichetti F, Barnes GT, McNeil SM, Ge P, Vonsattel JP, Gusella JF, Joyner AL, / et al.: Inactivation of the mouse Huntington's disease gene homolog Hdh. / Science 1995, 269:407-10. CrossRef
    12. Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A: Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. / Nat Genet 1995, 11:155-63. CrossRef
    13. White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL, MacDonald ME: Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. / Nat Genet 1997, 17:404-10. CrossRef
    14. Auerbach W, Hurlbert MS, Hilditch-Maguire P, Wadghiri YZ, Wheeler VC, Cohen SI, Joyner AL, MacDonald ME, Turnbull DH: The HD mutation causes progressive lethal neurological disease in mice expressing reduced levels of huntingtin. / Hum Mol Genet 2001, 10:2515-523. CrossRef
    15. Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q, Yang L, Kotin RM, Paulson HL, Davidson BL: RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. / Proc Natl Acad Sci U S A 2005, 102:5820-825. CrossRef
    16. Lecerf JM, Shirley TL, Zhu Q, Kazantsev A, Amersdorfer P, Housman DE, Messer A, Huston JS: Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington's disease. / Proc Natl Acad Sci U S A 2001, 98:4764-769. CrossRef
    17. Colby DW, Chu Y, Cassady JP, Duennwald M, Zazulak H, Webster JM, Messer A, Lindquist S, Ingram VM, Wittrup KD: Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. / Proc Natl Acad Sci U S A 2004, 101:17616-7621. CrossRef
    18. Dragatsis I, Levine MS, Zeitlin S: Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. / Nat Genet 2000, 26:300-06. CrossRef
    19. Ho A, Morishita W, Atasoy D, Liu X, Tabuchi K, Hammer RE, Malenka RC, Sudhof TC: Genetic analysis of Mint/X11 proteins: essential presynaptic functions of a neuronal adaptor protein family. / J Neurosci 2006, 26:13089-3101. CrossRef
    20. Mattson MP: Calcium and neurodegeneration. / Aging Cell 2007, 6:337-50. CrossRef
    21. Bossy-Wetzel E, Schwarzenbacher R, Lipton SA: Molecular pathways to neurodegeneration. / Nat Med 2004,10 (Suppl):S2-. CrossRef
    22. Bezprozvanny I, Hayden MR: Deranged neuronal calcium signaling and Huntington disease. / Biochem Biophys Res Commun 2004, 322:1310-317. CrossRef
    23. Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I: Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. / Neuron 2003, 39:227-39. CrossRef
    24. Kaltenbach LS, Romero E, Becklin RR, Chettier R, Bell R, Phansalkar A, Strand A, Torcassi C, Savage J, Hurlburt A, Cha GH, Ukani L, Chepanoske CL, Zhen Y, Sahasrabudhe S, Olson J, Kurschner C, Ellerby LM, Peltier JM, Botas J, Hughes RE: Huntingtin interacting proteins are genetic modifiers of neurodegeneration. / PLoS Genet 2007, 3:e82. CrossRef
    25. Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT: Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. / Nat Neurosci 2002, 5:731-36.
    26. Choo YS, Johnson GV, MacDonald M, Detloff PJ, Lesort M: Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. / Hum Mol Genet 2004, 13:1407-420. CrossRef
    27. Oliveira JM, Jekabsons MB, Chen S, Lin A, Rego AC, Goncalves J, Ellerby LM, Nicholls DG: Mitochondrial dysfunction in Huntington's disease: the bioenergetics of isolated and in situ mitochondria from transgenic mice. / J Neurochem 2007, 101:241-49. CrossRef
    28. Brustovetsky N, LaFrance R, Purl KJ, Brustovetsky T, Keene CD, Low WC, Dubinsky JM: Age-dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington's Disease. / J Neurochem 2005, 93:1361-370. CrossRef
    29. Seong IS, Ivanova E, Lee JM, Choo YS, Fossale E, Anderson M, Gusella JF, Laramie JM, Myers RH, Lesort M, MacDonald ME: HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. / Hum Mol Genet 2005, 14:2871-880. CrossRef
    30. Oliveira JM, Chen S, Almeida S, Riley R, Goncalves J, Oliveira CR, Hayden MR, Nicholls DG, Ellerby LM, Rego AC: Mitochondrial-dependent Ca2+ handling in Huntington's disease striatal cells: effect of histone deacetylase inhibitors. / J Neurosci 2006, 26:11174-1186. CrossRef
    31. Rizzuto R, Duchen MR, Pozzan T: Flirting in little space: the ER/mitochondria Ca2+ liaison. / Sci STKE 2004, 2004:re1. CrossRef
    32. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G: Structural and functional features and significance of the physical linkage between ER and mitochondria. / J Cell Biol 2006, 174:915-21. CrossRef
    33. Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamonti D, Cattaneo E: Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. / Nat Genet 2003, 35:76-3. CrossRef
    34. Truant R, Atwal RS, Burtnik A: Nucleocytoplasmic trafficking and transcription effects of huntingtin in Huntington's disease. / Prog Neurobiol 2007.
    35. record GEO: . [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11139]
    36. Ingenuity[http://www.ingenuity.com/]
    37. GoStat[http://gostat.wehi.edu.au/]
    38. Strehlow AN, Li JZ, Myers RM: Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space. / Hum Mol Genet 2007, 16:391-09. CrossRef
    39. Kuhn A, Goldstein DR, Hodges A, Strand AD, Sengstag T, Kooperberg C, Becanovic K, Pouladi MA, Sathasivam K, Cha JH, Hannan AJ, Hayden MR, Leavitt BR, Dunnett SB, Ferrante RJ, Albin R, Shelbourne P, Delorenzi M, Augood SJ, Faull RL, Olson JM, Bates GP, Jones L, Luthi-Carter R: Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. / Hum Mol Genet 2007, 16:1845-861. CrossRef
    40. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R: Multipotent cell lineages in early mouse development depend on SOX2 function. / Genes Dev 2003, 17:126-40. CrossRef
    41. Sipione S, Rigamonti D, Valenza M, Zuccato C, Conti L, Pritchard J, Kooperberg C, Olson JM, Cattaneo E: Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. / Hum Mol Genet 2002, 11:1953-965. CrossRef
    42. Trushina E, Singh RD, Dyer RB, Cao S, Shah VH, Parton RG, Pagano RE, McMurray CT: Mutant huntingtin inhibits clathrin-independent endocytosis and causes accumulation of cholesterol in vitro and in vivo. / Hum Mol Genet 2006, 15:3578-591. CrossRef
    43. Tang TS, Slow EJ, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R, Kristal BS, Hayden MR, Bezprozvanny I: Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease. / Proc Natl Acad Sci U S A 2005, 102:2602-607. CrossRef
    44. Nagai T, Sawano A, Park ES, Miyawaki A: Circularly permuted green fluorescent proteins engineered to sense Ca2+. / Proc Natl Acad Sci U S A 2001, 98:3197-202. CrossRef
    45. Csordas G, Hajnoczky G: Sorting of calcium signals at the junctions of endoplasmic reticulum and mitochondria. / Cell Calcium 2001, 29:249-62. CrossRef
    46. Kurrasch DM, Huang J, Wilkie TM, Repa JJ: Quantitative real-time polymerase chain reaction measurement of regulators of G-protein signaling mRNA levels in mouse tissues. / Methods Enzymol 2004, 389:3-5. CrossRef
  • 作者单位:Hua Zhang (1)
    Sudipto Das (2)
    Quan-Zhen Li (3)
    Ioannis Dragatsis (4)
    Joyce Repa (1)
    Scott Zeitlin (5)
    Gy?rgy Hajnóczky (2)
    Ilya Bezprozvanny (1)

    1. Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
    2. Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
    3. Department of Immunology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
    4. Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
    5. Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
文摘
Background The polyglutamine expansion in huntingtin (Htt) protein is a cause of Huntington's disease (HD). Htt is an essential gene as deletion of the mouse Htt gene homolog (Hdh) is embryonic lethal in mice. Therefore, in addition to elucidating the mechanisms responsible for polyQ-mediated pathology, it is also important to understand the normal function of Htt protein for both basic biology and for HD. Results To systematically search for a mouse Htt function, we took advantage of the Hdh +/- and Hdh-floxed mice and generated four mouse embryonic fibroblast (MEF) cells lines which contain a single copy of the Hdh gene (Hdh-HET) and four MEF lines in which the Hdh gene was deleted (Hdh-KO). The function of Htt in calcium (Ca2+) signaling was analyzed in Ca2+ imaging experiments with generated cell lines. We found that the cytoplasmic Ca2+ spikes resulting from the activation of inositol 1,4,5-trisphosphate receptor (InsP3R) and the ensuing mitochondrial Ca2+ signals were suppressed in the Hdh-KO cells when compared to Hdh-HET cells. Furthermore, in experiments with permeabilized cells we found that the InsP3-sensitivity of Ca2+ mobilization from endoplasmic reticulum was reduced in Hdh-KO cells. These results indicated that Htt plays an important role in modulating InsP3R-mediated Ca2+ signaling. To further evaluate function of Htt, we performed genome-wide transcription profiling of generated Hdh-HET and Hdh-KO cells by microarray. Our results revealed that 106 unique transcripts were downregulated by more than two-fold with p < 0.05 and 173 unique transcripts were upregulated at least two-fold with p < 0.05 in Hdh-KO cells when compared to Hdh-HET cells. The microarray results were confirmed by quantitative real-time PCR for a number of affected transcripts. Several signaling pathways affected by Hdh gene deletion were identified from annotation of the microarray results. Conclusion Functional analysis of generated Htt-null MEF cells revealed that Htt plays a direct role in Ca2+ signaling by modulating InsP3R sensitivity to InsP3. The genome-wide transcriptional profiling of Htt-null cells yielded novel and unique information about the normal function of Htt in cells, which may contribute to our understanding and treatment of HD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700