Effect of particle surface treatment and blending method on flexural properties of injection-molded cenosphere/HDPE syntactic foams
详细信息    查看全文
  • 作者:B. R. Bharath Kumar ; Mrityunjay Doddamani…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:51
  • 期:8
  • 页码:3793-3805
  • 全文大小:3,708 KB
  • 参考文献:1.Gupta N, Zeltmann S, Shunmugasamy V, Pinisetty D (2013) Applications of Polymer Matrix Syntactic Foams. JOM, p 1–10
    2.Gupta N, Pinisetty D, Shunmugasamy VC (2013) Reinforced polymer matrix syntactic foams: effect of nano and micro-scale reinforcement. Springer International Publishing, ChamCrossRef
    3.Yalcin B (2015) Chapter 7—hollow glass microspheres in polyurethanes. In: Amos SE, Yalcin B (eds) Hollow glass microspheres for plastics, elastomers, and adhesives compounds. William Andrew Publishing, Oxford, pp 175–200CrossRef
    4.Yalcin B, Amos SE (2015) Chapter 3—hollow glass microspheres in thermoplastics. In: Amos SE, Yalcin B (eds) Hollow glass microspheres for plastics, elastomers, and adhesives compounds. William Andrew Publishing, Oxford, pp 35–105CrossRef
    5.Bachmatiuk A, Börrnert F, Schäffel F, Zaka M, Martynkowa GS, Placha D, Schönfelder R, Costa PMFJ, Ioannides N, Warner JH, Klingeler R, Büchner B, Rümmeli MH (2010) The formation of stacked-cup carbon nanotubes using chemical vapor deposition from ethanol over silica. Carbon 48(11):3175–3181CrossRef
    6.Alkan C, Arslan M, Cici M, Kaya M, Aksoy M (1995) A study on the production of a new material from fly ash and polyethylene. Resour Conserv Recycl 13(3–4):147–154CrossRef
    7.Li J, Agarwal A, Iveson SM, Kiani A, Dickinson J, Zhou J, Galvin KP (2014) Recovery and concentration of buoyant cenospheres using an Inverted Reflux Classifier. Fuel Process Technol 123:127–139CrossRef
    8.Lauf RJ (1981) Cenospheres in fly ash and conditions favouring their formation. Fuel 60(12):1177–1179CrossRef
    9.Anshits NN, Mikhailova OA, Salanov AN, Anshits AG (2010) Chemical composition and structure of the shell of fly ash non-perforated cenospheres produced from the combustion of the Kuznetsk coal (Russia). Fuel 89(8):1849–1862CrossRef
    10.Gupta N, Singh Brar B, Woldesenbet E (2001) Effect of filler addition on the compressive and impact properties of glass fibre reinforced epoxy. Bull Mater Sci 24(2):219–223CrossRef
    11.Satapathy B, Das A, Patnaik A (2011) Ductile-to
    ittle transition in cenosphere-filled polypropylene composites. J Mater Sci 46(6):1963–1974. doi:10.​1007/​s10853-010-5032-0 CrossRef
    12.Qiao J, Wu G (2011) Tensile properties of fly ash/polyurea composites. J Mater Sci 46(11):3935–3941. doi:10.​1007/​s10853-011-5318-x CrossRef
    13.Manakari V, Parande G, Doddamani M, Gaitonde VN, Siddhalingeshwar IG, Kishore, Shunmugasamy VC, Gupta N (2015) Dry sliding wear of epoxy/cenosphere syntactic foams. Tribol Int 92:425–438CrossRef
    14.Labella M, Zeltmann SE, Shunmugasamy VC, Gupta N, Rohatgi PK (2014) Mechanical and thermal properties of fly ash/vinyl ester syntactic foams. Fuel 121:240–249CrossRef
    15.Hossain MM, Shivakumar K (2011) Compression fatigue performance of a fire resistant syntactic foam. Compos Struct 94(1):290–298CrossRef
    16.Doddamani M, Kishore, Shunmugasamy VC, Gupta N, Vijayakumar HB (2015) Compressive and flexural properties of functionally graded fly ash cenosphere–epoxy resin syntactic foams. Polym Compos 36(4):685–693CrossRef
    17.Deepthi MV, Sharma M, Sailaja RRN, Anantha P, Sampathkumaran P, Seetharamu S (2010) Mechanical and thermal characteristics of high density polyethylene–fly ash Cenospheres composites. Mater Des 31(4):2051–2060CrossRef
    18.Wang W, Li Q, Wang B, Xu X-T, Zhai J-P (2012) Synthesis of fly ash cenosphere/polyaniline and mullite/polyaniline core–shell composites. Mater Chem Phys 135(2–3):1077–1083CrossRef
    19.Guhanathan S, Devi MS, Murugesan V (2001) Effect of coupling agents on the mechanical properties of fly ash/polyester particulate composites. J Appl Polym Sci 82(7):1755–1760CrossRef
    20.Chand N, Sharma P, Fahim M (2010) Correlation of mechanical and tribological properties of organosilane modified cenosphere filled high density polyethylene. Mater Sci Eng A 527(21–22):5873–5878CrossRef
    21.Sharma J, Chand N, Bapat MN (2012) Effect of cenosphere on dielectric properties of low density polyethylene. Results Phys 2:26–33CrossRef
    22.Patankar SN, Das A, Kranov YA (2009) Interface engineering via compatibilization in HDPE composite reinforced with sodium borosilicate hollow glass microspheres. Compos A 40(6–7):897–903CrossRef
    23.Patankar SN, Kranov YA (2010) Hollow glass microsphere HDPE composites for low energy sustainability. Mater Sci Eng A 527(6):1361–1366CrossRef
    24.Sailaja RRN (2006) Mechanical and thermal properties of bleached kraft pulp–LDPE composites: effect of epoxy functionalized compatibilizer. Compos Sci Technol 66(13):2039–2048CrossRef
    25.Sailaja RRN, Seetharamu S (2008) Itaconic acid—grafted—LDPE as compatibilizer for LDPE—plasticized Tapioca starch blends. React Funct Polym 68(4):831–841CrossRef
    26.Sailaja RRN, Deepthi MV (2010) Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater Des 31(9):4369–4379CrossRef
    27.Deepthi MV, Sailaja RRN, Sampathkumaran P, Seetharamu S, Vynatheya S (2014) High density polyethylene and silane treated silicon nitride nanocomposites using high-density polyethylene functionalized with maleate ester: mechanical, tribological and thermal properties. Mater Des 56:685–695CrossRef
    28.Chiu F-C, Yen H-Z, Lee C-E (2010) Characterization of PP/HDPE blend-based nanocomposites using different maleated polyolefins as compatibilizers. Polym Testing 29(3):397–406CrossRef
    29.Parthasarathi V, Sundaresan B, Dhanalakshmi V, Anbarasan R (2010) Functionalization of HDPE with aminoester and hydroxyester by thermolysis method—an FTIR-RI approach. Thermochim Acta 510(1–2):61–67CrossRef
    30.Gu J, Wu G, Zhao X (2009) Effect of surface-modification on the dynamic behaviors of fly ash cenospheres filled epoxy composites. Polym Compos 30(2):232–238CrossRef
    31.Huo P, Yan Y, Li S, Li H, Huang W, Chen S, Zhang X (2010) H2O2 modified surface of TiO2/fly-ash cenospheres and enhanced photocatalytic activity on methylene blue. Desalination 263(1–3):258–263CrossRef
    32.Desai J, Shit SC, Jain SK (2014) Studies on thermal, electrical and flame properties of surface modified cenosphere filled ABS composites. Int J Plast Technol 18(3):390–396CrossRef
    33.Das A, Satapathy BK (2011) Structural, thermal, mechanical and dynamic mechanical properties of cenosphere filled polypropylene composites. Mater Des 32(3):1477–1484CrossRef
    34.Maharsia R, Gupta N, Jerro HD (2006) Investigation of flexural strength properties of rubber and nanoclay reinforced hybrid syntactic foams. Mater Sci Eng A 417(1–2):249–258CrossRef
    35.Tagliavia G, Porfiri M, Gupta N (2010) Analysis of flexural properties of hollow-particle filled composites. Compos B Eng 41(1):86–93CrossRef
    36.Tagliavia G, Porfiri M, Gupta N (2012) Influence of moisture absorption on flexural properties of syntactic foams. Compos B Eng 43(2):115–123CrossRef
    37.Lin W-H, Jen M-HR (1998) Manufacturing and Mechanical Properties of Glass Bubbles/Epoxy Particulate Composite. J Compos Mater 32(15):1356–1390CrossRef
    38.Kishore, Shankar R, Sankaran R (2005) Short beam three point bend tests in syntactic foams. Part I: microscopic characterization of the failure zones. J Appl Polym Sci 98(2):673–679CrossRef
    39.Kishore, Shankar R, Sankaran S (2005) Short-beam three-point bend tests in syntactic foams. Part II: effect of microballoons content on shear strength. J Appl Polym Sci 98(2):680–686CrossRef
    40.Kishore, Shankar R, Sankaran S (2005) Short-beam three-point bend test study in syntactic foam. Part III: effects of interface modification on strength and fractographic features. J Appl Polym Sci 98(2):687–693CrossRef
    41.Zhu B, Ma J, Wang J, Wu J, Peng D (2012) Thermal, dielectric and compressive properties of hollow glass microsphere filled epoxy-matrix composites. J Reinf Plast Compos 31(19):1311–1326CrossRef
    42.Yung KC, Zhu BL, Yue TM, Xie CS (2009) Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Composit Sci Technol 69(2):260–264CrossRef
    43.Poveda RL, Dorogokupets G, Gupta N (2013) Carbon nanofiber reinforced syntactic foams: degradation mechanism for long term moisture exposure and residual compressive properties. Polym Degrad Stab 98(10):2041–2053CrossRef
    44.Divya VC, Ameen Khan M, Nageshwar Rao B, Sailaj RRN (2015) High density polyethylene/cenosphere composites reinforced with multi-walled carbon nanotubes: mechanical, thermal and fire retardancy studies. Mater Des 65:377–386CrossRef
    45.Bharath Kumar BR, Doddamani M, Zeltmann SE, Gupta N, Ramesh MR, Ramakrishna S (2016) Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine. Mater Des 92:414–423. doi:10.​1016/​j.​matdes.​2015.​12.​052
    46.Huang JS, Gibson LJ (1991) Fracture toughness of brittle foams. Acta Metall Mater 39(7):1627–1636CrossRef
    47.Porfiri M, Gupta N (2009) Effect of volume fraction and wall thickness on the elastic properties of hollow particle filled composites. Compos B 40(2):166–173CrossRef
    48.Gupta N, Ye R, Porfiri M (2010) Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams. Compos B 41(3):236–245CrossRef
    49.Aureli M, Porfiri M, Gupta N (2010) Effect of polydispersivity and porosity on the elastic properties of hollow particle filled composites. Mech Mater 42(7):726–739CrossRef
    50.Bardella L, Genna F (2001) On the elastic behavior of syntactic foams. Int J Solids Struct 38(40–41):7235–7260CrossRef
    51.Bardella L, Sfreddo A, Ventura C, Porfiri M, Gupta N (2012) A critical evaluation of micromechanical models for syntactic foams. Mech Mater 50:53–69CrossRef
    52.Gabriel LH (1998) History and physical chemistry of HDPE. Ohio University, Ohio
    53.Matsunaga T, Kim JK, Hardcastle S, Rohatgi PK (2002) Crystallinity and selected properties of fly ash particles. Mater Sci Eng A 325(1–2):333–343CrossRef
    54.Shunmugasamy V, Zeltmann S, Gupta N, Strbik O III (2014) Compressive Characterization of Single Porous SiC Hollow Particles. JOM 66(6):892–897CrossRef
  • 作者单位:B. R. Bharath Kumar (1)
    Mrityunjay Doddamani (1)
    Steven E. Zeltmann (2)
    Nikhil Gupta (2)
    Uzma (3)
    S. Gurupadu (3)
    R. R. N. Sailaja (3)

    1. Lightweight Materials Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
    2. Composite Materials and Mechanics Laboratory, Mechanical and Aerospace Engineering Department, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
    3. The Energy and Resources Institute (TERI), Southern Regional Center, Bangalore, 560 071, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
The present work on cenosphere/high-density polyethylene (HDPE) syntactic foams aims at understanding the effect of surface treatment of cenospheres and functionalization of HDPE on flexural properties. Cenospheres are treated with silane, and HDPE is functionalized with 10 % dibutyl maleate. Effects of mechanical and Brabender mixing methods are also studied. Flexural test specimens are cast with 20, 40, and 60 wt% of cenospheres using injection molding. The flexural modulus and strength are found to increase with increasing cenosphere content. Particle breakage increases with the cenosphere content, and the measured properties show increased dependence on processing method. Brabender mixing resulted in 70 and 41 % higher modulus and strength for 60 wt% cenospheres than HDPE. Modulus of syntactic foams is predicted by two theoretical models. Bardella–Genna model provides close estimates for syntactic foams having 20 and 40 wt% cenospheres, while predictions are higher for higher cenosphere content, likely due to particle breakage during processing. The uncertainty in the properties of cenospheres due to defects contributes to the variation in the predicted values.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700