A review of micro-devices assembly techniques and technology
详细信息    查看全文
  • 作者:J. Cecil ; M. B. Bharathi Raj Kumar ; Yajun Lu…
  • 关键词:Micro ; assembly ; Automation ; Gripping ; Virtual reality ; Work cells
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:83
  • 期:9-12
  • 页码:1569-1581
  • 全文大小:494 KB
  • 参考文献:1.Cecil J, Powell D, Vasquez D (2007) Assembly and manipulation of micro devices—a state of the art survey. Robot Comput Integr Manuf 23(5):580–588CrossRef
    2.Salmeron AJ, Tarazon RL et al (2005) Recent development in micro-handling systems for micro-engineering. J Mater Process Technol 167(2–3):499–507CrossRef
    3.Hassani Niaki M et al (2012) Deriving and analyzing the effective parameters in micro grippers performance. Scientica Iranica 19(6):1554–1563CrossRef
    4.Ballandras S, Basrour S, Robert L, Megtert S, Blind P et al (1997) Micro grippers fabricated by the LIGA technique. Sensors Actuators A Phys 58(3):265–272CrossRef
    5.Nashrul M, Shirinzadeh B (2009) Development of a high precision flexure based micro gripper. Precis Eng 33(4):362–370CrossRef
    6.Ivanova K, Ivanov T et al (2006) Thermally driven micro gripper as a tool for micro assembly. Microelectric Eng 83(4–9):1393–1395CrossRef
    7.Enikov ET, Lazarov KV (2001) Optically transparent gripper for microassembly. Proc SPIE Microrobotics Microassembly 4568:40–49CrossRef
    8.Hamedi M, Salimi P, Vismeh M (2012) Simulation and experimental investigation of a novel electrostatic micro gripper system. Mechatronic Eng 98:467–471
    9.Yi Y, Liu C (1999) Assembly of micro-optical devices using magnetic actuation. Sensors Actuators A Phys 78(2–3):205–211CrossRef
    10.Wester B, Rajaraman S, Ross J et al (2011) Development and characterization of a packaged mechanically actuated microtweezer system. Sensors Actuators A Phys 167(2):502–511CrossRef
    11.Chen BK, Zhang Y, Sun Y (2009) Active release of microobjects using a MEMS micro gripper to overcome adhesion forces. J Microelectromech Syst 18(3):652–659CrossRef
    12.Khan S, Boer T, Estevez P, Langen HH, Schmidt RH (2010) Development of haptic micro gripper for microassembly operation. Haptics: Generating Perceiving Tangible Sensations Lect Notes Comp Sci 6192:309–314
    13.Chesna JW, Smith ST, Hastings DJ, Nowakowski BK, Lin F et al (2012) Development of a micro-scale assembly facility with a three fingered, self-aware assembly tool and electro-chemical etching capabilities. Precis Assem Technol Syst IFIP Adv Inf Commun Technol 371:1–8CrossRef
    14.Porta M, Tichem M (2010) Grasping and interaction force feedback in microassembly. Precis Assem Technol Syst IFIP Adv Inf Commun Technol 315:199–206CrossRef
    15.Kohl M, Just E, Pleging W, Miyazaki S (2000) SMA micro gripper with integrated antagonism. Sensors Actuators A Phys 83(1–3):208–213CrossRef
    16.Kohl M, Krevet B, Just E (2002) SMA micro gripper system. Sensors Actuators A Phys 97–98:646–652CrossRef
    17.Roch I, Bidaud P, Collard D, Buchaillot L (2003) Fabrication and characterization of an SU-8 gripper actuated by a shape memory alloy thin film. J Micromech Microeng 13(2):330–336CrossRef
    18.Kyung JH, Ko BG, Ha YH, Chung GJ (2008) Design of micro gripper for micromanipulation of microcomponents using SMA wires and flexible hinges. Sensors Actuators A Phys 141(1):144–150CrossRef
    19.Lin CM, Fan CH, Lan CC (2009) A shape memory alloy actuated micro gripper with wide handling ranges. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, July14–17, Singapore, ISBN 978-1-4244-2852-6
    20.Daly M, Prequent A et al (2012) Fabrication of a novel laser-processed NiTi shape memory micro gripper with enhanced thermomechanical functionality. J Intell Mater Syst Struct 0:1–7
    21.Li YF, Ho J, Li N (2000) Development of a physically behaved robot work cell in VR for task teaching. Robot Comput Integr Manuf 16(2–3):91–101CrossRef
    22.Monferrer A, Bonyuet D (2002) Cooperative robot teleoperation through VR interfaces. Proceedings of International Conference on Information Visualization Environments, July 10–12, London, UK, ISBN 0-7695-1656-4
    23.Shen Y, Xi N, Lai K, Li W (2004) Internet-based remote assembly of micro-mechanical-systems (MEMS). Assem Autom 24(3):289–296CrossRef
    24.Luo Q, Xiao J (2006). Haptic simulation for micro/nano-scale optical fiber assembly. Proceedings of IEEE International Conference on Intelligent Robots and Systems, October 9–15, Beijing, 1353–1358, ISBN 1-4244-0259-X
    25.Reinhart G, Reitar A (2011) An investigation of haptic feedback effects in telepresent microassembly. Prod Eng 5(5):581–586CrossRef
    26.Estevez P, Mulder A, Schmidt RH (2012) 6-DoF miniature maglev positioning stage for application in haptic micro-manipulation. Mechatronics 22(7):1015–1022CrossRef
    27.Bolopion A, Stolle C et al (2012) Vision based haptic feedback for remote micromanipulation in a SEM environment. Int J Optomechanics 6(3):236–252CrossRef
    28.Cecil J, Jones J (2014) An advanced virtual environment for micro assembly. Int J Adv Manuf Technol 72(1):47–56CrossRef
    29.Probst M, Vollmers K, Kratochvil BE, Nelson BJ (2006) “Design of an advanced microassembly system for the automated assembly of bio-microrobots”, Proc. 5th International Workshop on Microfactories
    30.Probst M, Hürzeler C, Borer R, Nelson BJ (2009) A microassembly system for the flexible assembly of hybrid robotic MEMS devices. Int J Optomechatronics 3(2):69–90CrossRef
    31.Gopinath N, Cecil J, Powell D (2007) Micro devices assembly using virtual environments. J Intell Manuf 18(3):361–369CrossRef
    32.Alex J, Vikramaditya B, Nelson B (1998) A VR teleoperator interface for assembly of hybrid MEMS prototypes. Proceedings of DETC’98 ASME Design Engineering Technical Conference, September 13–16, Atlanta, GA
    33.Popa DO, Stephanou HE (2004) Micro and mesoscale robotic assembly. J Manuf Process 6(1):52–71CrossRef
    34.Cassier C, Ferreira A, Hirai S (2002) Combination of vision servoing techniques and VR-based simulation for semi-autonomous microassembly workstation. Proceedings of the 2002 International Conference on Intelligent Robots and Systems, May 11–15, ISBN 0-7803-7272-7
    35.Ferreira A, Hamdi M (2004) Microassembly planning using physically based models in virtual environment. Proceedings of the 2004 International Conference on Intelligent Robots and Systems, September 28–October 2, 4: 3369–3374, ISBN 0-7803-8463-6
    36.Cecil J, Gobinath N (2005) Development of a virtual and physical work cell to assemble micro-devices. Robot Comput Integr Manuf 21(4–5):431–441CrossRef
    37.Sun L, Tan F, Rong W, Zhu J (2005) A collision detection approach in virtual environment of micromanipulation robot. High Technol Lett 11(4):371–376
    38.Tan FS, Sun LN, Rong BW, Zhu J, Xu L (2004) Modeling of micromanipulation robot in virtual environment. Actametallurgicasinica(English Letters) 17(2):194–198
    39.Sulzmann A, Breguet JM, Jacot J (1995) Microvision system (MVS): a 3D computer graphic-based microrobot telemanipulation and position feedback by vision. Proceeding of SPIE on Microrobotics and Mechanical Systems 2593:38–49CrossRef
    40.Liu Z, Chen H (2013) Process simulation of micro device with VR technology. Intell Comput Evol Comput Adv Intell Syst Comput 180:61–65
    41.Zhou Q, Aurelian A et al (2001) A microassembly station with controlled environment. Proc SPIE Microrobotics Microassembly 4568:252–260CrossRef
    42.Das AN, Murthy R, Popa DO et al (2012) A multiscale assembly and packaging system for manufacturing of complex micro-nano devices. IEEE Trans Autom Sci Eng 9(1):160–170
    43.Mardanov A, Seyfried J, Fatikow S (1999) An automated assembly system for a microassembly station. Comput Ind 38(2):93–102CrossRef
    44.Chang RJ, Lin CY, Lin PS (2011) Visual-based automation of peg-in-hole microassembly process. ASME J Manuf Sci Eng 133(4):1–12CrossRef
    45.Estevez P, Khan S, Lambert P, Porta M, Polat I, Scherer C, Tichem M, Staufer U, Langen HH, Schmidt M (2010) A haptic tele-operated system for microassembly. Precis AssemTechnol Syst IFIP Adv Inf Commun Technol 315:13–20CrossRef
    46.Ruggeri S, Fontana G, Pagano C, Fassi I, Legnani G (2012) Handling and manipulation of microcomponents: work-cell design and preliminary experiments. Precis Assem Technol Syst IFIP Adv Inf Comm Technol 371:65–72CrossRef
    47.Gendreau D, Gauthier M et al (2010) Modular architecture of the microfactories for automatic micro-assembly. Robotics Comp Int Manuf 26(4):354–360CrossRef
    48.Gendreau D, Rakotondrabe M, Lutz P (2012) Towards reconfigurable and modular microfactory based on the TRING-module stick–slip microrobot. 8th International Workshop on Microfactories, Tempere, Finland, June 18–20, Accessed on December 21, 2013, http://​hal.​archives-ouvertes.​fr/​hal-00719157
    49.Hollis R, Quaid A (1995) An architecture for agile assembly. Proceedings of the American Society of Precision Engineering, Austin, October 15–19, 1995
    50.Cecil J, Huber J, Gobinath N, Jacquess J (2011) A virtual factory environment to support process design in micro assembly domains. Comp Aided Design Appl 8(1):119–127CrossRef
    51.Saeedi E, Abbasi S, Böhringer KF, Parviz BA (2007) Molten-alloy driven self-assembly for nano and micro scale system integration. Fluid Dyn Mater Process 2(4):221–246
    52.Bogue R (2008) Self-assembly: a review of recent developments. Assembly Automation 28(3):211–215CrossRef
    53.Fonstad CG Jr, Zahn M (2005) Method and system for magnetically assisted statistical assembly of wafers. US Patent 6:888,178
    54.Ramadan Q, Uk YS, Vaidyanathan K (2007) Large scale microcomponents assembly using an external magnetic array. Appl Phys Lett 90:172502–172503CrossRef
    55.Rivero R, Shet S, Booty M, Fiory A, Ravindra N (2008) Modeling of magnetic-field-assisted assembly of semiconductor devices. J Electr Mater 37:374–378CrossRef
    56.Shetye S, Eskinazi I, Arnold D (2010) Magnetic self-assembly of millimeter-scale components with angular orientation. J Microelectromechanical Syst 19:599–609CrossRef
    57.Shetye SB, Eskinazi I, Arnold DP (2008) Self-assembly of millimeter-scale components using integrated micromagnets. IEEE Trans Magn 44:4293–4296CrossRef
    58.Grzybowski BA, Stone HA, Whitesides GM (2002) Dynamics of self-assembly of magnetized disks rotating at the liquid-air interface. Proc Natl Acad Sci U S A 99:4147–4151CrossRef
    59.Iwase E, Shimoyama I (2005) Multi-step sequential batch self-assembly of three-dimensional micro-structures using magnetic field. Proceedings of 18th IEEE International Conference on MEMS 2005, Miami, FL, USA, pp. 588–591
    60.Wang DA, Ko HH (2009) Magnetic-assisted self-assembly of rectangular-shaped parts. Sens Actuat A: Phys 151:195–202CrossRef
    61.Morris CJ, Isaacson B, Grapes D, Dubey M (2011) Self-assembly of microscale parts through magnetic and capillary interactions. Micromachines 2(1):69–81CrossRef
    62.Scott KL, Hirano T, Yang H, Singh H, Howe RT, Niknejad AM (2004) High-performance inductors using capillary based fluidic self-assembly. J Microelectromechanical Syst 13:300–309CrossRef
    63.Srinivasan U, Liepmann D, Howe RT (2001) Microstructure to substrate self-assembly using capillary forces. J Microelectromechan Syst 10:17–24CrossRef
    64.Srinivasan U, Helmbrecht M, Rembe C, Muller R, Howe R (2002) Fluidic self-assembly of micromirrors onto microactuators using capillary forces. IEEE J Sel Topics Quantum Electr 8:4–11CrossRef
    65.Xiong X, Hanein Y, Fang J, Wang Y, Schwartz DT, Bohringer KF (2003) Controlled multibatch self-assembly of microdevices. J Microlectromechanical Syst 12(2):117–127CrossRef
    66.Clark TD, Ferrigno R, Tien J, Paul KE, Whitesides GM (2002) Template-directed self-assembly of 10-μm-sized hexagonal plates. J Am Chem Soc 124:5419–5426CrossRef
    67.Clark TD, Tien J, Duffy DC, Paul KE, Whitesides GM (2010) Self-assembly of 10-μm-sized objects into ordered three-dimensional arrays. J Am Chem Soc 123:7677–7682CrossRef
    68.Morris CJ, Ho H, Parviz BA (2006) Liquid polymer deposition on free-standing microfabricated parts for self-assembly. J Microelectromechanical Syst 15:1795CrossRef
    69.Zheng W, Jacobs HO (2004) Shape-and-solder-directed self-assembly to package semiconductor device segments. Appl Phys Lett 85:3635–3637CrossRef
    70.Burgard M, Schläfli N, Mai U (2012) Processes for the self-assembly of micro parts. Precision Assem Technol Syst IFIP Adv Inf Comm Technol 371:36–41CrossRef
    71.Tien J, Terfort A, Whitesides GM (1997) Micro-fabrication through electrostatic self-assembly. Langmuir 13(20):5349–5355CrossRef
    72.Harsh KF, Bright VM, Lee YC (1999) Solder self-assembly for three-dimensional microelectromechanical systems. Sensors Actuators 77:237–244CrossRef
    73.Syms RRA (1998) Rotational self-assembly of complex microstructures by the surface tension of glass. Sensors Actuators A 65:238–243CrossRef
    74.Xi J, Schmidt JJ, Montemagno CD (2005) Self-assembled microdevices driven by muscle. Nat Mater 4:180–184CrossRef
    75.Sariola V, Jääskeläinen M, Zhou Q (2010) Hybrid microassembly combining robotics and water droplet self-alignment. IEEE Trans Robot 26(6):965–977CrossRef
    76.Liimatainen V, Zhou Q (2011) Fusion of robotic microassembly and self-assembly. Proceedings of the Microassembly Workshop at IROS 2011, San Francisco, CA.
    77.Gobinath N, Cecil J, Son T (2006) A collaborative system to realize virtual enterprises using 3APL, Agent Languages and Technologies IV. Lect Notes Artificial Intell 4327(2006):191–206
    78.GENI project (2014). The GENI project, www.​geni.​net (accessed June 2014).
    79.Murthy R, Stephanou HE, Popa DO (2013) AFAM: an articulated four axes microrobot for nanoscale applications. Autom Sci Eng, IEEE Trans 10(2):276–284CrossRef
    80.Cecil J, Gobinath N (2010) A cyber physical test bed for collaborative micro assembly engineering. Proceedings of the 2010 Collaborative Technologies and Systems (CTS) conference, pp. 430–439, Chicago, May 17–21, 2010
    81.Ye X, Zhang Y, Ru C, Luo J, Xie S, Sun Y (2013) Automated pick-place of silicon nanowires. AutomSci Eng, IEEE Trans 10(3):554–561CrossRef
    82.Cecil J, Jones J (2014) VREM: an advanced virtual environment for micro assembly. Int J Adv Manuf Technol 72(1–4):47–56CrossRef
    83.Liu J, Gong Z, Tang K, Lu Z, Ru C, Luo J, Sun Y (2014) Locating end-effector tips in robotic micromanipulation. Robotics, IEEE Trans 30(1):125–130CrossRef
    84.Cecil J, Gunda R, Calyam P, Seetharam S (2013) A next generation collaborative framework for advanced manufacturing. In Automation Science and Engineering (CASE), 2013 I.E. International Conference on, pp. 128–132, Madison, Aug. 17–20, 2013
    85.US Ignite, https://​www.​us-ignite.​org/​
  • 作者单位:J. Cecil (1)
    M. B. Bharathi Raj Kumar (1)
    Yajun Lu (1)
    Vinod Basallali (2)

    1. School of Industrial Engineering and Management, Center for Information Centric Engineering (CICE), Oklahoma State University, Stillwater, OK, USA
    2. School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK, USA
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Production and Logistics
    Mechanical Engineering
    Computer-Aided Engineering and Design
  • 出版者:Springer London
  • ISSN:1433-3015
文摘
This paper provides a review of techniques and technology relevant to the field of micro-devices assembly (MDA). MDA is an emerging domain of importance which is expected to have a substantial impact on a range of industrial fields including sensors, surveillance devices, and semiconductor devices. This paper provides a review of a cross-section of research including micro-gripping design and manipulation techniques, work cell design and factory automation, self-assembly techniques, and virtual reality-based approaches in micro-assembly. A discussion of the key challenges for this domain along with directions for future research is also provided.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700