Ultra fast cooling of hot steel plate by air atomized spray with salt solution
详细信息    查看全文
  • 作者:Soumya S. Mohapatra (1)
    Satya V. Ravikumar (1)
    Jay M. Jha (1)
    Akhilendra K. Singh (1)
    Chandrima Bhattacharya (1)
    Surjya K. Pal (2)
    Sudipto Chakraborty (1)
  • 刊名:Heat and Mass Transfer
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:50
  • 期:5
  • 页码:587-601
  • 全文大小:1,419 KB
  • 参考文献:1. Lucas A, Simon P, Bourdon G, Herman JC, Riche P, Neutjens J, Harlet P (2004) Metallurgical aspect of ultra fast cooling in front of down-coiler. Steel Res Int 75:139-46
    2. Bin H, Hua LX, Guo-dong W, Guang-fu S (2005) Development of cooling process technique in hot strip mill. J Iron Steel Res Int 12:12-6
    3. Oliveria MSA, Sousa ACM (2001) Neural network analysis of experimental data for air/water spray cooling. J Mater Process Technol 113:439-45 CrossRef
    4. Mohapatra SS, Chakraborty S, Pal SK (2012) Experimental studies on different cooling process to achieve ultra fast cooling rate for hot steel plate. Exp Heat Transf 25:111-26. doi:10.1080/08916152.2011.582567 CrossRef
    5. Puschmann F, Specht E (2004) Transient measurement of heat transfer in metal quenching with atomized sprays. Exp Thermal Fluid Sci 28:607-15. doi:10.1016/j.expthermflusci.2003.09.004 CrossRef
    6. Al-Ahmadi HM, Yao SC (2008) Spray cooling of high temperature metals using high mass flux industrial nozzle. Exp Heat Transf 21:38-4. doi:10.1080/08916150701647827 CrossRef
    7. Bhattacharya P, Samanta AN, Chakraborty S (2009) Spray evaporative cooling to achieve ultra fast cooling in run out table. Int J Therm Sci 48:1741-747. doi:10.1016/j.ijthermalsci.2009.01.015 CrossRef
    8. Qio YM, Chandra SM (1997) Experiments on adding a surfactant to water drops boiling on a hot surface. Math Phys Eng Sci 453:673-89 CrossRef
    9. Qio YM, Chandra SM (1998) Enhancement of spray cooling by addition of surfactant water spray on a hot surface. J Heat Transf 304:63-1. doi:10.1115/1.2830070
    10. Cui Q, Chandra S, McCahan S (2001) The effect of dissolving gases or solids in water droplets boiling on a hot surface. J Heat Transf 123:719-28. doi:10.1115/1.1376394 CrossRef
    11. King MD, Yang JC, Chien WS, Grosshandler WL (1997) Evaporation of a small water droplet containing an additive. In: Proceedings of the 32nd national heat transfer conference, vol 4, pp 45-7
    12. Cui Q, Chandra S, McCahan S (2003) The effect of dissolving salts in water spray used for quenching a hot surface: part-1 boiling of single droplets. J Heat Transf 125:326-32. doi:10.1115/1.1532010 CrossRef
    13. Cui Q, Chandra S, McCahan S (2003) The effect of dissolving salts in water spray used for quenching a hot surface: part-2 spray cooling. J Heat Transf 125:333-38. doi:10.1115/1.1532011 CrossRef
    14. Li D, Wells MA (2004) Effect of surface thermocouple installation on the discrepancy of the measured thermal history and predicted surface heat flux during a quench operation. Metall Mater Trans B 36:343-54 CrossRef
    15. Trujillo DM, Busby HR (2003) / INTEMP—inverse heat transfer analysis-em class="a-plus-plus">user’s manual. TRUCOMP CO. FOUNTAIN VALLEY, Canada, pp 1-7
    16. Busby HR, Trujillo DM (1985) Numerical solution to a two-dimensional inverse heat conduction problem. Int J Numer Meth Eng 21:349-59 CrossRef
    17. Alam U, Krol J, Specht E, Schmidt J (2008) Enhancement and local regulation of metal quenching using atomized sprays. J ASTM Int 5:1-0. doi:10.1520/JAI101805 CrossRef
    18. Ravikumar SV, Jha JM, Sarkar I, Mohapatra SS, Pal SK, Chakraborty S (2013) Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives. Exp Thermal Fluid Sci 50:79-9 CrossRef
    19. Ravikumar SV, Jha JM, Mohapatra SS, Sinha A, Pal SK, Chakraborty S (2013) Experimental study of the effect of spray inclination on ultrafast cooling of a hot steel plate. Heat Mass Transf 49:1509-522 CrossRef
    20. Ravikumar SV, Jha JM, Mohapatra SS, Pal SK, Chakraborty S (2013) Influence of ultrafast cooling on microstructure and mechanical properties of steel. Steel Res Int. doi:10.1002/srin.201200346
    21. Lamb H (1993) Hydrodynamics. Cambridge University Press, United Kingdom
    22. Huang C, Carey V (2007) The effect of dissolved salt on the leidenfrost transition. Int J Heat Mass Transf 50:269-82. doi:10.1016/j.ijheatmasstransfer.2006.06.031 CrossRef
  • 作者单位:Soumya S. Mohapatra (1)
    Satya V. Ravikumar (1)
    Jay M. Jha (1)
    Akhilendra K. Singh (1)
    Chandrima Bhattacharya (1)
    Surjya K. Pal (2)
    Sudipto Chakraborty (1)

    1. Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, 721032, India
    2. Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, 721302, India
  • ISSN:1432-1181
文摘
In the present study, the applicability of air atomized spray with the salt added water has been studied for ultra fast cooling (UFC) of a 6?mm thick AISI-304 hot steel plate. The investigation includes the effect of salt (NaCl and MgSO4) concentration and spray mass flux on the cooling rate. The initial temperature of the steel plate before the commencement of cooling is kept at 900?°C or above, which is usually observed as the “finish rolling temperature-in the hot strip mill of a steel plant. The heat transfer analysis shows that air atomized spray with the MgSO4 salt produces 1.5 times higher cooling rate than atomized spray with the pure water, whereas air atomized spray with NaCl produces only 1.2 times higher cooling rate. In transition boiling regime, the salt deposition occurs which causes enhancement in heat transfer rate by conduction. Moreover, surface tension is the governing parameter behind the vapour film instability and this length scale increases with increase in surface tension of coolant. Overall, the achieved cooling rates produced by both types of salt added air atomized spray are found to be in the UFC regime.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700