Layer the sphere
详细信息    查看全文
  • 作者:Ranita Biswas ; Partha Bhowmick
  • 关键词:3D printing ; Discrete sphere ; Integer algorithm ; Rapid prototyping ; Sphere voxelation
  • 刊名:The Visual Computer
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:31
  • 期:6-8
  • 页码:787-797
  • 全文大小:4,684 KB
  • 参考文献:1.Andres, E.: Discrete circles, rings and spheres. Comput. Gr. 18(5), 695鈥?06 (1994)View Article
    2.Andres, E., Jacob, M.: The discrete analytical hyperspheres. IEEE TVCG 3(1), 75鈥?6 (1997)
    3.Augustin, C., Hungerbach, W.: Production of hollow spheres (HS) and hollow sphere structures (HSS). Mater. Lett. 63(1314), 1109鈥?112 (2009)View Article
    4.Bera, S., Bhowmick, P., Bhattacharya, B.B.: A digital-geometric algorithm for generating a complete spherical surface in \({\mathbb{{Z}}}^3\) . In: Proceedings of ICAA鈥?4, LNCS, vol. 8321, pp. 49鈥?1 (2014)
    5.Bresenham, J.E.: A linear algorithm for incremental digital display of circular arcs. CACM 20(2), 100鈥?06 (1977)MATH View Article
    6.Brimkov, V.E., Barneva, R.P.: On the polyhedral complexity of the integer points in a hyperball. TCS 406(1鈥?), 24鈥?0 (2008)MATH MathSciNet View Article
    7.Chamizo, F., Cristobal, E.: The sphere problem and the \(L\) -functions. Acta Mathematica Hungarica 135(1鈥?), 97鈥?15 (2012)
    8.Chandru, V., Manohar, S., Prakash, C.E.: Voxel-based modeling for layered manufacturing. IEEE Comput. Gr. Appl. 15(6), 42鈥?7 (1995)View Article
    9.Cochran, J.K.: Ceramic hollow spheres and their applications. Curr. Opin. Solid State Mater. Sci. 3(5), 474鈥?79 (1998)View Article
    10.Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Gr. Models Image Process. 57(6), 453鈥?61 (1995)View Article
    11.Coxeter, H.S.M.: Regular Polytopes. Dover Publications, New York (1973)
    12.Desimone, J.M., Ermoshkin, A., Samulski, E.T.: Method and apparatus for three-dimensional fabrication. US Patent 20140361463 (2014)
    13.Fiorio, C., Jamet, D., Toutant, J.L.: Discrete circles: An arithmetical approach with non-constant thickness. In: Proceedings of Vision Geometry XIV, Electronic Imaging, SPIE, vol. 6066, p. 60660C (2006)
    14.Fiorio, C., Toutant, J.L.: Arithmetic discrete hyperspheres and separatingness. In: Proceedings of DGCI鈥?6, pp. 425鈥?36 (2006)
    15.Foley, J.D., Dam, A.V., Feiner, S.K., Hughes, J.F.: Computer Graphics: Principles and Practice. Addison-Wesley, New York (1993)
    16.Ghahramani, M., Garibov, A., Agayev, T.: Production and quality control of radioactive yttrium microspheres for medical applications. Appl. Radiat. Isot. 85, 87鈥?1 (2014)View Article
    17.Guo, L., Dong, X., Cui, X., Cui, F., Shi, J.: Morphology and dispersivity modulation of hollow microporous spheres synthesized by a hard template route. Mater. Lett. 63(1314), 1141鈥?143 (2009)View Article
    18.Hearn, E.: Chapter 9: Thin cylinders and shells. In: Mechanics of Materials 1, 3 edn. Butterworth-Heinemann, Oxford (1997)
    19.Hiller, J., Lipson, H.: Design and analysis of digital materials for physical 3D voxel printing. Rapid Prototyp. J. 15(2), 137鈥?49 (2009)View Article
    20.Hiller, J., Lipson, H.: Tunable digital material properties for 3D voxel printers. Rapid Prototyp. J. 16(4), 241鈥?47 (2010)View Article
    21.Hong, J.Y., Way, D.L., Shih, Z.C., Tai, W.K., Chang, C.C.: Inner engraving for the creation of a balanced lego sculpture. Vis. Comput. 1鈥?0 (2015). doi:10.鈥?007/鈥媠0037101510724
    22.Hoque, M.E. (ed.): Advanced Applications of Rapid Prototyping Technology in Modern Engg. InTech (2011)
    23.Jee, H.J., Sachs, E.: A visual simulation technique for 3D printing. Adv. Eng. Softw. 31(2), 97鈥?06 (2000)View Article
    24.Kamrani, A.K., Nasr, E.A.: Engineering Design and Rapid Prototyping. Springer, Boston (2009)
    25.Kawashita, M., et al.: Preparation of ceramic microspheres for in situ radiotherapy of deep-seated cancer. Biomaterials 24(17), 2955鈥?963 (2003)View Article
    26.Kim, O.: Rapid prototyping of electrically small spherical wire antennas. IEEE Trans. Antennas Propag. 62(7), 3839鈥?842 (2014)View Article
    27.Klette, R.: Digital geometry: the birth of a new discipline. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33鈥?1 (2001)
    28.Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)
    29.Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406, 974鈥?78 (2000)View Article
    30.Maehara, H.: On a sphere that passes through \(n\) lattice points. Eur. J. Comb. 31(2), 617鈥?21 (2010)MATH MathSciNet View Article
    31.Melchels, F.P., Domingos, M.A., Klein, T.J., Malda, J., Bartolo, P.J., Hutmacher, D.W.: Additive manufacturing of tissues and organs. Progr. Polym. Sci. 37(8), 1079鈥?104 (2012)View Article
    32.Montani, C., Scopigno, R.: Graphics Gems (Chapter: Spheres-to-voxels conversion). pp. 327鈥?34. Academic Press Professional Inc, San Diego (1990)
    33.Nanya, T., Yoshihara, H., Maekawa, T.: Reconstruction of complete 3D models by voxel integration. J. Adv. Mech. Desig. Sys. Manuf. 7, 362鈥?76 (2013)
    34.Pintus, R., Gobbetti, E., Cignoni, P., Scopigno, R.: Shape enhancement for rapid prototyping. Vis. Comput. 26, 831鈥?40 (2010)View Article
    35.Roget, B., Sitaraman, J.: Wall distance search algorithm using voxelized marching spheres. J. Comput. Phys. 241, 76鈥?4 (2013)View Article
    36.Medeiros e S谩, A., Rodriguez Echavarria, K., Arnold, D.: Dual joints for 3d-structures. Vis. Comput. 30, 1321鈥?331 (2014)View Article
    37.Sene, F.F., Martinelli, J.R., Okuno, E.: Synthesis and characterization of phosphate glass microspheres for radiotherapy applications. J. Non-Cryst. Solids 354, 4887鈥?893 (2008)View Article
    38.Steingart, R.C., Tzu-Wei, D.: Fabrication of non-homogeneous articles via additive manufacturing using 3D voxel-based models. US Patent 8509933 (2013)
    39.Toutant, J.L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties. Discret. Appl. Math. 161, 2662鈥?677 (2013)MATH MathSciNet View Article
    40.Waag, U., Schneider, L., Uthman, P., Stephani, G.: Metallic hollow spheres: materials for the future. Metal Powder Rep. 55, 29鈥?3 (2000)View Article
    41.Zheng, M., Cao, J., Chang, X., Wang, J., Liu, J., Ma, X.: Preparation of oxide hollow spheres by colloidal carbon spheres. Mater. Lett. 60, 2991鈥?993 (2006)View Article
  • 作者单位:Ranita Biswas (1)
    Partha Bhowmick (1)

    1. Computer Science and Engineering Department, Indian Institute of Technology, Kharagpur, India
  • 刊物类别:Computer Science
  • 刊物主题:Computer Graphics
    Computer Science, general
    Artificial Intelligence and Robotics
    Image Processing and Computer Vision
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2315
文摘
Voxelation today is not only limited to discretization and representation of 3D objects, but has also been gaining tremendous importance in rapid prototyping through 3D printing. In this paper, we introduce a novel technique for discretization of a sphere in the integer space, which gives rise to a set of mathematically accurate, 3D-printable physical voxels up to the desired level of precision. The proposed technique is based on an interesting correspondence between the voxel set forming a discrete sphere and certain easy-to-compute integer intervals defined by voxel position and sphere dimension. It gives us several algorithmic leverages, such as computational sufficiency with simple integer operations and amenability to layer-by-layer additive fabrication. Theoretical analysis, prototype characteristics, and experimental results demonstrate its efficiency, versatility, and further prospects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700